
Some notes on Javascript
John R Hudson∗†

9th April 2020

Contents

1 Introduction 4

2 Javascript objects 5
2.1 The built-in environment 5
2.2 The host environment 5

3 Object types 5

I The built-in environment 6

4 The global object 6
4.1 Global functions 6

5 Objects 7
5.1 Object properties 7
5.2 Accessing object properties 8
5.3 Object methods . 9

6 Functions 10
6.1 Built-in functions 11
6.2 Function methods 11
6.3 Constructor functions 11
6.4 Object prototypes 11
6.5 Object prototype properties 12
6.6 Constructor function properties 12

7 Arrays 14
7.1 Array properties 15
7.2 Array methods . 15

7.2.1 Stack manipulation of arrays 15
7.2.2 Array methods for functions 16

8 Strings 16
8.1 String methods . 17

9 Boolean objects 18
∗With thanks to David Flanagan (2011, 2012) and Ian Hickson (2020)
†The author would welcome notification of any errors or possible misunderstandings.

1

mailto:j.r.hudson%40virginmedia.com

10 Number and math objects 19
10.1 Number object methods 19
10.2 Math objects . 19

10.2.1 Math object properties 19
10.2.2 Math object methods 20

11 Date objects 20
11.1 Date object methods 22

12 Regular expressions 23
12.1 Regular expression methods 25

13 Error objects 25

14 JSON 25

15 Statements 26
15.1 Declaring variables 26
15.2 Conditionals . 27
15.3 Flow control . 27
15.4 Exception and error handling 29

II The host environment 30

16 Host environment objects 30

17 The window object 32
17.1 Window object properties 32
17.2 Window object methods 33

18 The document node 35
18.1 Document node properties 35
18.2 Node methods . 35

19 The document object 36
19.1 Document properties 36
19.2 Document methods 37

20 The element node 38
20.1 Element node properties 38
20.2 Element node methods 38

21 Collection objects 39
21.1 Collection object properties 39
21.2 Collection object methods 40

22 Element objects 41
22.1 Element object properties 42
22.2 Element methods 44
22.3 Child element methods 46

23 The text node 46
23.1 Text node properties 46

24 Canvas element objects 47
24.1 Contexts . 47
24.2 2d context . 48

24.2.1 WebGL context 49
24.2.2 Context, path and styles attributes 49
24.2.3 Pixel manipulation 58

25 Media element objects 59
25.1 Media element properties 59
25.2 Media element methods 62
25.3 audioTrack objects 62

25.3.1 audioTrack object properties 62
25.3.2 audioTrack object methods 62

25.4 textTrack objects 62
25.4.1 textTrack object properties 64

2

25.4.2 textTrack object methods 64
25.5 videoTrack objects 65

25.5.1 videoTrack object properties 65
25.5.2 videoTrack object methods 65

25.6 MimeType and Plugin objects 65
25.6.1 MimeType and Plugin object properties . . 65
25.6.2 MimeType and Plugin object methods . . . 66

26 Table element objects 66
26.1 Table element properties 66
26.2 Table element methods 67

27 Form element objects 68
27.1 Form element object properties 68
27.2 Form element object methods 70

28 The history object 71
28.1 History properties 71
28.2 History methods 71

29 The location object 72
29.1 Location object properties 72
29.2 Location object methods 73

30 The navigator object 73
30.1 Navigator object properties 73
30.2 Navigator object methods 74

31 Drop and drag 75
31.1 Drop and drag properties 75
31.2 Drop and drag methods 76

32 Event handlers 76
32.1 The DOMEvents object 78
32.2 Event methods . 78

32.3 Error event object 79
32.4 Message event objects 80
32.5 Message event methods 80
32.6 Message constructors 80
32.7 Server sent events 80

33 HTTP Requests 81
33.1 HTTP methods . 81
33.2 Hyperlinks (temporary location) 82

34 ValidityState object 82
34.1 ValidityState object properties 82

III Additional Javascript features 83

35 Application cache objects 83

36 Web workers 83
36.1 WebWorker properties 84
36.2 WebWorker methods 84

37 Web sockets 85
37.1 WebSocket properties 86
37.2 Web socket methods 86

38 Web storage 86
38.1 Storage properties 87
38.2 Storage methods 87

A Reserved words 89

B Built-in operators 89
B.1 Arithmetic and string operators 89
B.2 Arithmetic only operators 90

3

B.3 Relational operators 90
B.4 Equality operators 90
B.5 Bitwise operators 91
B.6 Logical operators 91

B.7 Conditional operator 91
B.8 Assignment operators 91
B.9 Comma operator 91
B.10 Date operators . 92

1 Introduction

Javascript is an interpreted object oriented scripting language
developed for browsers and reliant on the normal features of a
browser. It is not therefore intended for use as a standalone lan-
guage. It is case sensitive and uses UTC-16. These notes mainly
cover strict mode Javascript as defined by Ecma International
(2011).
Throughout these notes, the following shorthands are used in

the code examples:

a for <array> meaning any array like object

c for any of HTMLCollection, HTMLAllCollection,
HTMLFormControlsCollection, HTMLOptionsCollection
or HTMLPropertiesCollection array objects

d for <date> or <document>, depending on context, meaning any
date object or document

e for <element> meaning any browser element object

f for <function> meaning any function object

h for <handle> or <HTTP Request>, depending on context, mean-
ing an event handle or any HTTPRequest object

i for an image

k for key

m for <media resource> meaning a media object

n for <node> or <number>, depending on context, meaning any
node or number object

n meaning any number, normally an integer

o for <object> meaning any object

p for <property> or <path>, depending on context, meaning any
property of an object or a path in a <canvas> object

r for <RegExp> meaning any regular expression object

s for <storage>, <string> or <styles>, depending on context,
meaning any storage, any string like object or <styles> in
a <canvas> object

t for <text> meaning any text in an object

v for a non-numeric, or undefined, value

w for window meaning the host window object

4

2 Javascript objects

A Javascript object is a collection of properties and their
values; a callable object is a function. Properties may hold
other objects, functions or primitive values, such as undefined,
null, Boolean, Number or String, and have attributes such as
writeable, enumerable and configurable. A function that is asso-
ciated with a property of an object is called a method.
Javascript objects may be:

host objects provided by a web browser or a web server environ-
ment

native objects provided by the Javascript environment which are
independent of the browser or server environment

built-in objects provided by the Javascript environment which are
native objects but not independent of the browser or server
environment.

2.1 The built-in environment

The built-in objects include the global object, the Object ob-
ject, the Function object, the Array object, the String object,
the Boolean object, the Number object, the Math object, the Date
object, the RegExp object, the JSON object, and the Error objects
Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

2.2 The host environment

A web browser host environment will provide objects for win-
dows, menus, pop-ups, dialogue boxes, text areas, anchors, frames,
history, cookies, and input/output along with requests, clients,
files and mechanisms to lock and share data and means to attach
scripting code to events such as change of focus, page and image
loading, unloading, error and abort, selection, form submission,
and mouse actions. This scripting code is reactive to user inter-
action.

3 Object types

Javascript objects are untyped; the values associated with an
object’s properties may be declared as one type and then used as
another type. The available types are Undefined, Null, Boolean,
String, Number, and Object.

You can determine which type of value an object’s declared
properties hold with o.typeof(); (see Appendix B).

Note that, when converting types, true, "true" and 1 are equi-
valent as are false, "false" and 0; undefined, null and "" (an
empty string) are also false whereas Infinity and [] (an empty
array) are true. NaN may be true or false depending on context.
You can control variable types and type conversions with

Number(" "), String(), Boolean() and Object().

5

Part I
The built-in environment
4 The global object

When Javascript launches, it has a global object containing all
the values of the properties defining:

• properties like NaN, Infinity and undefined

• functions like eval(), parseInt(), parseFloat(),
isNan() and isFinite()

• functions to decode and encode URIs from and to utf-8

• constructor functions like Array(), Boolean(), Date(),
Function(), Object(), Number(), RegExp(), String() and
Error() (section 6.3)

• properties like Math and JSON.
The global object has no call or construct property and the
values of its writeable, enumerable and configurable attributes are
true, false and true respectively. In the top level built-in en-
vironment, the keyword this refers to the global object; in the
HTML document object model the keyword window refers to it.
Any object declared to be global becomes part of the global

object.

4.1 Global functions

eval("s") evaluates s as if Javascript code or returns the value of
s if it is not.

parseInt("s"[,b]) returns an integer derived from s with base 10
if b is not specified or NaN, discarding preceding white space
and succeeding non-numeric characters in the string; nu-
meric characters preceded by 0x or 0X are interpreted as
hexadecimal.

parseFloat("s") returns a floating point number derived from s
or NaN, discarding preceding white space and succeeding
non-numeric characters in the string

isNAN("s") returns true if s cannot be interpreted as a number

isFinite("s") returns true if s can be interpreted as a number
which is not Infinity or NaN

6

5 Objects

All objects contain name/value pairs of properties each of which
has a number of attributes; in arrays the name is always a numeric
key. To create a new object which inherits the properties of the
built-in object prototype use

Object(o);

or the constructor function:

new Object(o);

(section 6.3) which is equivalent to

var o = new.Object();

To create a new object which inherits the properties of an existing
object use inherit(o), for example,

var booklet = inherit(book);

5.1 Object properties
Objects may have data properties if they are not functions or ac-
cessor properties if they are. Data properties have the attributes
value, writeable, enumerable and configurable, the first of which

holds the value of the property. Accessor properties have the at-
tributes get, set, enumerable and configurable. The default values
of value, get and set are undefined and of writeable, configurable
and enumerable false but the enumerable attribute is set to true
if the function contains a for in expression.
All objects have the internal properties prototype and class,

extensible which hold a Boolean value and the internal methods
get, getOwnProperty, getProperty, put, canPut, hasProperty,
delete, defaultValue and defineOwnProperty (which has the
attributes length, value (the number of parameters), writeable,
enumerable and configurable and its own property false) though
some objects may throw a TypeError if the defaultValue internal
method is called.
The length property of a built-in function holds the number of

arguments required by the function (1 if it is a constructor func-
tion) and its writeable, enumerable and configurable properties are
all set to false. The length property of an array holds the num-
ber of key/value pairs. Changing the value of length has the
effect of adding undefined key/value pairs or deleting key/value
pairs at the end of the array.
All objects other than the global object inherit these properties

from their object prototype though their precise implementation
may vary between different classes of object.

New classes can be created by creating new prototypes with

Object.create(o,{p1: {value: v, writeable: <true/false>, enumerable: <true/false>,
configurable: <true/false>}
{p2: {value: v, writeable: <true/false>, enumerable: <true/false>, configurable: <true/false>}
{...}
});

7

In addition to these internal properties, the Boolean,
Date, Number and String objects have the internal prop-
erty primitiveValue, functions have the internal proper-
ties call, hasInstance, scope (the execution environment),
formalParameters (the names of parameters) and code (the
function’s ECMAScript code), child functions have the internal
properties targetFunction, boundThis and boundArguments,
constructor functions (section 6.3) have the internal property
construct, RegExp objects have the internal property match and
arguments objects have the internal property parameterMap.

5.2 Accessing object properties
Most properties of an object may be returned or set using the .
notation or the [] notation, for example,

o.p;

or

o["p"];

where the property name is a number or a string containing more
than one word, for example,

book.topic;
book["main title"];

To add or modify the properties of an object, use

o.p="v";

or

o["p"]="v";

for example

book.author = "Flanagan";
book["main title"]= "Javascript Pocket
Reference";

Objects with the same prototype value have the same class
value. There is no direct access to value of the class property
but it can be returned using (from Flanagan, 2012, p. 91):

function classof(o){
if (o===null) return "Null";

if (o===undefined) return "Undefined";
return Object.prototype.toString.call(o),slice(8,-1);

}

In practice, for functions, it is "Function", for arrays it is
"Array", for strings it is "String", for Booleans it is "Boolean",
for numbers it is "Number"", for Math it is "Math"", for dates it is
"Date"", for regular expressions it is "RegExp", for error messages

it is "Error" and for all other objects it is "Object".

You can establish whether an object is an instance of a par-
ticular class of object by using the instanceof operator (ap-
pendix B.3), for example,

8

o instanceof Array;

returns true if o is an array.

5.3 Object methods
A method is a function (section 6) which has been assigned to a
property of an object; it may be called with:

o.<name>();

or

o[name]();

To temporarily call a method, that is, create a new function based
on the method and then discard it after its work is done, use:

f.call(o,v1,v2,...);

or, where the number of values to be passed as parameters is un-
certain, by specifying the parameters as an array,

f.apply(o,[<array>]);

Note that Javascript does not check that the correct number of
parameters have been passed; unless zero arguments have been
passed, it simply gives missing parameters the value undefined.
If more parameters have been passed than are specified, you can
use

arguments.length

to find the number of arguments passed and the extra parameters
can then be accessed using arguments[n] where n is the position
of the argument in the list starting from 1.

o.hasOwnProperty(p); returns true if the object has the de-
clared property p (inherited properties are ignored).

o.isPrototypeOf(o); returns true if o shares the prototype of the
object.

o.propertyIsEnumerable(p); returns true if the declared prop-
erty p of the object has the attribute enumerable (inherited
properties are ignored).

o.toString(); by default returns a string of the form
[<object>,<class>] but most objects return more spe-
cific values.

o.toLocaleString(); returns the string in a locale sensitive form;
this is currently only implemented for Array, Date and
Number.

o.valueOf(); returns an object as defined by a specific implement-
ation, in the case of functions the Object.prototype object
of that implementation.

9

6 Functions

A function is a callable object; functions may be declared with:

function <name>(<parameters>) {

<statements>

};

or

Function (v1, v2, ... vn, <body>);

or

new Function (v1, v2, ... vn, <body>);

all of which create a new function and a prototype for the function
so that it can be used as a constructor (section 6.3).
Function names may commence with a letter, an underscore or

a dollar sign.
Functions containing statements may be declared within top

levels statements, functions or variable declarations but not within
other statements (section 15).
A function may be assigned to

• a variable

• a property of an object, in which case it is known as a
method.

If the first line of a function is "use strict"; Javascript strict
mode is used meaning, among other things, that all variables must
be declared, certain expressions which might otherwise be ignored
generate a TypeError and functions invoked as functions rather
than as methods have the value of this undefined.
<name> may be omitted if the function is assigned to a variable,

e.g.

var v = function (<parameters>) {
return <expression>
};

Such functions may also be declared within a statement.
Variables declared within a function have local scope and take

precedence over global variables; all other variables have global
scope. This means you can create a library of functions which can
be used in any program because their variables will not conflict
with any of the global variables in the program. To completely
hide the local variables within a function defining an expression,
enclose the function in parentheses and call it immediately with:

(function (<parameters>) {
return <expression>
}());

Combined with a variable declaration

var v = (function (<parameters>) {
return <expression>
}());

this gives v the value returned by the function rather than assign-
ing the function to the variable.
Functions are called with:

<name>();

and methods, that is, functions assigned to an object property,
with:

o.<name>();

or

o[name]();

10

6.1 Built-in functions
Boolean(o); returns the Boolean value of an object

Number(o); returns the number value of an object

Object(o);

String(o); returns the string value of an object

6.2 Function methods
Functions have no equivalents to o.toLocaleString();
o.hasOwnProperty(p); o.isPrototypeOf(o); or
o.propertyIsEnumerable(p); instead, they have

f.apply(<environment>,a); which temporarily calls a method
which returns the results of applying a particular function
to all the values in an array and then discards it after its
work is done

f.bind(<environment>[,v1[,v2,. . .]]); which returns a child
function which does not have a prototype property or
the scope, formalParameters or code internal proper-
ties. Instead, child functions have the internal properties
targetFunction, boundThis (defining the environment)
and boundArgs (the values passed). The behaviour of the
call(), construct() and hasInstance() internal methods
will depend on the properties the child function has inher-
ited.

f.call(<environment>[,v1[,v2,. . .]]); temporarily calls a
method which returns the results of applying a particular
function to all the values provided for it and then discards
it after its work is done; the value of its length property is
1 because v1[,v2,. . . are optional.

f.toString() returns the source code of the function

6.3 Constructor functions

All functions automatically have a prototype property so that
they can be used as constructor functions. These conventionally
begin with an uppercase character and use the new operator to
call the construct internal method of the function, for example,

new Array();
new Boolean();
...

in the case of built-in constructor functions. But new constructor
functions can be created with

function <Name>(<parameters>) {
<statements>

return <expression>

};

which can be used with the new operator.
Both create a new empty object with properties inherited from

its prototype or a new object with the values of one or more prop-
erties set from the parameters passed to the constructor function.

6.4 Object prototypes

The different object prototypes called by a constructor function
when asked to create a new object can be accessed through the
prototype property of the constructor function, for example,

Object.prototype;
Array.prototype;
...

11

These normally contain the default inherited properties of an ob-
ject of a particular type but, as prototypes are objects which can
be modified or newly created, with, for example,

Object.create(Object.prototype);

an object’s inherited properties may be different from those of the
built-in Javascript prototypes. To access the inherited properties
of an object, use:

Object.getPrototypeOf(o);

To determine whether an object is inherited from another object
use:

o.isPrototypeOf(x);

6.5 Object prototype properties

The value of the prototype property of every prototype other
than the object prototype is Object.prototype; the value of the
prototype property of the object prototype is null. The values of
their attributes writeable, enumerable and configurable are true,
false and false respectively and the value of their extensible
property is true. The constructor property holds the value of
their constructor.

6.6 Constructor function properties
The value of the prototype property of a constructor function is the prototype object, for example, Object.prototype,
Array.prototype and the value of the length property is 1. You can obtain the value of a property of an object with:

Object.getOwnPropertyDescriptor(o,p);

Object.getOwnPropertyNames(o);

returns an array of the names of the declared properties of an object.
Since arrays have property keys rather than property names, the equivalent for an array is

Array.isArray(o);

which returns true if the object is an array.

Object.create(o[,p {<attribute>: v, <attribute>: v, ...}]);

creates a new object with the specified properties. In the absence of a property list, it uses the properties of the prototype.
To add or update a single declared property of an existing object, use

Object.defineProperty(o,p {value: v, writeable: <true/false>, enumerable:
<true/false>, configurable: <true/false>});

12

To add or update a number of properties in an existing object, use

Object.defineProperties (o,{p1: {value: v, writeable: <true/false>, enumerable:
<true/false>, configurable: <true/false>}
{p2: {value: v, writeable: <true/false>, enumerable: <true/false>, configurable:
<true/false>}
{...}
});

Note that, if you assign a value to an inherited property, it simply changes the value of the property; if you declare a new property
with the same name as an inherited property, it hides the inherited property.

String constructors have the properties

String.fromCharCode (ch1,ch2 ,...) ;

which returns the string value of a sequence of characters.
Number constructors have the properties

Number.MAX_VALUE;

which returns the largest positive finite value of the Number type,
which is approximately 1.7976931348623157 ∗ 10308.

Number.MIN_VALUE;

returns the smallest positive value of the Number type, which is
approximately 5 ∗ 10−324.

Number.NaN;

returns NaN.

Number.NEGATIVE_INFINITY;

returns −∞.

Number.POSITIVE_INFINITY;

returns +∞.
Date constructors have the properties

Date.parse(s);

which returns a number value representing the time in milli-
seconds.

Date.UTC(year,month[,date[,hours[,minutes[,
seconds[,ms]]]]]);

returns a number value representing the time specified in the ar-
guments in UTC milliseconds.

Date.now();

returns a number value representing the current time in UTC mil-
liseconds.
The extensible property of an object is accessible using the

constructor function property:

Object.isExtensible(o);

13

which returns a Boolean value. To prevent further properties and
their values being added to an object, use:

Object.preventExtensions(o);

To prevent any changes to the existing properties, use:

Object.seal(o);

and, to prevent any changes at all to the object, use:

Object.freeze(o);

You can determine whether an object is sealed or frozen with

Object.isSealed(o);

or

Object.isFrozen(o);

which return Boolean values but you cannot extend, unseal or
unfreeze an object once any have been set.

Object.keys(o);

returns an array of the enumerable declared properties of an array
like object.

7 Arrays

An array is a particular instance of an object in which the name
of each value property is expressed as a number, starting with 0,
known as the object key; arrays are untyped and may hold ele-
ments of different types — so objects may be contained in arrays
as well as containing arrays.
Arrays inherit from the Array.prototype and may be declared

with a comma separated list of values; if there is no value between
two commas, the element is undefined; if no values are defined,
the array is said to be sparse.

Array(v1,v2,...);

and

new Array(v1,v2,...);

both create a new array.

new Array(n);

creates a new array with n object keys but their values empty;
ergo, trying to create an array with a single value will fail — it
must either be empty or have two or more values supplied.
To add a further element to or replace an existing element in

the array use

a[n] = v;

where n is the position of the element counting from 0. To return
the value associated with an object key, use

a[n];

where n is the position of the element.

14

Arrays may be contained in objects and objects in arrays. Ele-
ments in arrays contained in arrays, thereby forming a matrix,
can be declared with:

a[y][x] = v1,v2,...;

7.1 Array properties

The extensible property of an array to set to true as are its
attributes writeable, enumerable and configurable and these at-
tributes of the length property. Note that arrays use a variant of
the defineOwnProperty internal method used by other objects.

a.length returns, or sets, the number of elements in an array; so

a.length = 7;

deletes any elements after number 6 or adds undefined elements
if the length is less than 7.

7.2 Array methods

a.concat() concatenates arrays, or other objects holding arrays,
into a new array.

a.indexOf(v[,n]) returns the number of the first element in an ar-
ray or array like object which matches v, or -1 if not found,
starting from the first element or element n if specified.

a.join() returns the elements of an array, or any object holding
array like elements, in CSV1 (the default); an alternative
separator, for example, a.join(" ") or a.join("-") may be
specified or no separator specified, for example, a.join(""),
which returns a concatenated string.

a.lastIndexOf(v[,−n]) returns the number of the first element in
an array or array like object which matches v, or -1 if not
found, starting from the last element or element −n if spe-
cified.

a.reverse() reverses the order of the elements an array or an array
like object.

a:slice(n[,e]) returns a new array starting from element n of an
array or array like object and going up to but not including
element e or the end if e is unspecified, counting from the
last element and going up to the start if n or e are negative.

a.sort([x,y]) returns an array created from an array or an ar-
ray like object in which the elements have been sorted with
respect to whether x exceeds y or not; where x or y are
undefined, returns an array by ASCII values; in this case,
change alphabetic values to upper or lower case before sort-
ing.

a.splice(s[,n,v1,v2,. . .]) returns an array of the n elements start-
ing from s deleted from an array, or an array like object
where v1,v2,... have been inserted at s in the source ar-
ray or array like object.

a.toString() returns an array in CSV removing all other delim-
iters within the array.

7.2.1 Stack manipulation of arrays

a.pop() returns the value of the last element in an array or array
like object.

a.push(v1,v2,. . .) adds successive elements to the end of an array
or array like object.

1The opposite of s.split(",").

15

a.shift() returns the value of the first element in an array or array
like object.

a.unshift(v1,v2,. . .) adds successive elements to the start of an
array or array like object.

7.2.2 Array methods for functions

a.every(f[,<environment>]) iterates through an array executing
the same criterion specifying function and returns true if all
elements satisfy the criterion or if the array is empty.

a.filter(f[,<environment>]) iterates through an array or an ar-
ray like object executing the same criterion specifying func-
tion and returns an array of those elements which satisfy the
criterion.

a.forEach(f[,<environment>]) iterates through an array execut-
ing the same function on each element.

a.map(f[,<environment>]) iterates through an array or an ar-
ray like object executing the same function on each element
and returning a new array.

a.reduce(f[,n]) iterates through an array or array like object
(starting with a key n or the first key in the array) execut-
ing a combining function on each element and returning the
result of the combining function.

a.reduceRight(f[,n]) iterates through an array in reverse (start-
ing with a key n or the last key in the array) executing a
combining function on each element and returning the result
of the combining function.

a.some(f[,<environment>]) iterates through an array or an ar-
ray like object executing the same criterion specifying func-
tion and returns false if no elements satisfy the criterion
or if the array is empty.

8 Strings

Strings only contain unsigned 16-bit units of UTF-16 text.
Strings must be quoted within a pair of single or double quotes; in-
ner strings must have the opposite quote style to the outer string.

String("<string>");

returns the value of the string, rather than creating a string object.
A String object may be created with

new String("<string>");

whose primitiveValue internal property holds the value of the
string.

The value of the length property of a string prototype is 0 and
the other properties of a string prototype can be accessed in the
same ways as an object (section 6.5).

s.contains(string) returns true if s contains ‘string’ and false if
not

s.length returns the length of s

and strings may be treated as character arrays so that

s[n] or

s.item(n) returns the character at position n counting from 0.

16

Strings may include the following escaped characters:

\0 null

\b backspace

\t tab

\n newline

\v vertical tab

\f FF

\r CR

\" double quote

\’ single quote

\\ backslash

\x xx Latin-1 character

\u xxxx Unicode character

Strings may be concatenated with the + operator and the value
of any variable other than null and undefined may be converted
to a string with toString().

8.1 String methods
s.charAt(n) returns the nth character in a string or a string like

object counting from 0 or an empty string if the nth char-
acter does not exist

s.charCodeAt(n) returns the ASCII value of the nth character in
a string or a string like object counting from 0 or NaN if the
nth character does not exist

s.concat(s1,s2[,s3,. . .]) returns a string consisting of s1 followed
by s2 [followed by s3 . . .]

s.indexOf(s[,n]) returns the character position of the first char-
acter of the first occurrence of the substring s, starting at
character n or the start of the string, within a string or string
like object or −1 if not found

s.lastIndexOf(s[,n]) returns the character position of the first
character of the last occurrence of the substring s, ending

at character n or the end of the string, within a string or
string like object or −1 if not found

s.localeCompare(s2) returns an integer expressed as a string
value representing the difference in Unicode values between
two strings in a string or string like object; in other words,
0 means they are identical

s.match(r) returns an array containing the match (or matches if
the global flag is set) of a regular expression in a string or
string like object

s.replace("<substring>",s/f) if the second parameter is a
string, returns a string with all instances of <substring> in
a string or string like object replaced with s (use s.match(r)
with regular expressions); if the second parameter is a func-
tion, returns the string created as a result of evaluating the
function with at least three parameters: the substring to
be matched, any offset and the substring to replace it; this
method can be refined by using

$& for the replacement text
$‘ for whatever precedes the matched substring
$’ for whatever follows the matched substring
$n for the nth occurrence up to 9
$nn for the 10th to 99th occurrence
$$ for $

s.search(r) returns the character position in a string or string like
object of a regular expression at the first match or -1 if no
match is returned

s:slice(s[,e]) returns a string value starting from character s of a
string or string like object and going up to but not includ-
ing element e or the end if e is unspecified, counting from

17

the last element and going up to the start if s and e are
negative.

s.split([<separator>[,n]]) returns an array of up to n elements
containing the string or string like object split wherever
the separator appeared in it; if there is no separator, the
array consists of the individual characters in the string;
s.split(",") reverses the result of a.join() returning an
array containing the string split wherever a comma appeared
in it; it may be used with regular expressions

s.substring(n[,e]) returns a substring starting at character n and
going up to but not including character e from a string or
string like object

s.toLowerCase() returns a new UTF-16 string using only

lower case characters, not necessarily the reverse of
s.toUpperCase()

s.toLocaleLowerCase() returns a new UTF-16 string using only
lower case characters (for languages where conversions to
lower case are not straightforward)

s.toUpperCase() returns a new UTF-16 string using only
upper case characters, not necessarily the reverse of
s.toLowerCase()

s.toLocaleUpperCase() returns a new UTF-16 string using only
upper case characters (for languages where conversions to
lower case are not straightforward)

s.toTrim() returns a string value with leading and trailing white
space removed

9 Boolean objects

Boolean(v);

returns the value of the Boolean, rather than creating a Boolean
object. A Boolean object may be created with

new Boolean(v);

whose primitiveValue internal property holds the Boolean value.
The following take the Boolean value false:

undefined // the value of an empty variable
null // an object with no values
0
-0
NaN
"" // an empty string

18

10 Number and math objects

Number(n);

returns the value of the number, rather than creating a Number
object. A Number object may be created with

new Number(n);

whose primitiveValue internal property holds the number.
Numbers are stored as 64-bit floating point numbers; they may

be the integers from−231 to 231−1 or 0 to 232−1, NaN, +Infinity,
-Infinity, +0 and −0.2
Infinity is a valid result of a maths operation. Dividing 0 by

0 or Infinity by Infinity produces NaN. To test for NaN, use
either x!=x; or isNAN(x); which return true if x=NaN.

isFinite(n);

returns true if n is not NaN, Infinity or -Infinity.
Do not precede base-10 numbers with 0 and note that, because

they are represented in binary, there are no exact matches for
many decimal numbers making comparisons of raw numbers dif-
ficult. Numbers preceded by 0x or 0X are interpreted as hexa-
decimal. n.n . . . en or n.n . . . En is interpreted as the exponential
n.n . . .× 10n.

10.1 Number object methods
n.toExponential(n) returns a string in exponential format with

one integer and n decimal places (up to 20) derived from a
number

n.toFixed(n) returns a string of n decimal places derived from a
number

n.toLocaleString() converts a number to a string expressed in
a locale dependent format determined by the host environ-
ment

n.toPrecision(n) returns a string of n significant figures (up to
21) derived from a number; it may be returned in fixed
or exponential format in which case it it is equivalent to
n.toExponential(n − 1); if n is undefined, n.toString()
is substituted

n.toString(b) converts a number to a string expressing its base b
value; the default is 10 and the numbers from 10 to 35 are
expressed as a to z

10.2 Math objects

Math objects do not have the call or construct internal proper-
ties; so they do not have a constructor function, the value of their
prototype property being the object prototype.

10.2.1 Math object properties

Math.E ε

Math.LN2 natural log of 2

Math.LN10 natural log of 10

Math.LOG2E log to base 2 of ε

Math.LOG10E log to base 10 of ε

Math.PI π
2However, NaN and Infinity cannot be represented in a floating point number and therefore cannot be used in HTML.

19

Math.SQRT1_2
√

1
2

Math.SQRT2
√

2

10.2.2 Math object methods

Math.abs(n) returns the absolute value of n

Math.acos(n) returns the arc cosine of n expressed in radians

Math.asin(n) returns the arc sine of n expressed in radians

Math.atan(n) returns the arc tangent of n expressed in radians

Math.atan2(y,x) returns the arc tangent between the x axis and
x, y counter-clockwise expressed in radians

Math.ceil(n) returns the smallest integer greater than or equal
to n

Math.cos(n) returns the cosine of n expressed in radians

Math.exp(n) returns εn

Math.floor(n) returns the greatest integer less than or equal to n

Math.log(n) returns the natural log of n3

Math.max(v1,v2[,v3. . .]) returns the highest value among
v1,v2[,v3...]

Math.min(v1,v2[,v3. . .]) returns the lowest value among
v1,v2[,v3...]

Math.pow(x,y) returns xy

Math.random() generates a random number between 0 and 1

Math.round(n) rounds to the nearest integer (upwards if n is
equidistant from two integers, so −3.5 returns −3)

Math.sin(n) returns the sine of n expressed in radians

Math.sqrt(n) returns 2
√
n

Math.tan(n) returns the tangent of n expressed in radians

11 Date objects

Date objects contain a number expressing milliseconds back-
wards or forwards from midnight (00.00) on 1 January 1970 UTC
(= +0). Years, months and days are calculated from this using the
Gregorian system and days are assumed to have 86,400,000 milli-
seconds, that is, leap seconds are ignored. Months are expressed
by the integers 0 to 11 and days by the integers 1 to 31.
A host environment is expected to implement a Local Time

Zone Adjustment expressed in milliseconds and a Daylight Saving
Adjustment where appropriate.
Date strings take the form:

YYYY-MM-DDTHH:mm:ss.sssZ

Where
3To calculate logs to base 10, use Math.log(x)

Math.LN10

20

YYYY is the decimal digits of the year 0000 to 9999 in the
Gregorian calendar; note that year 0000 in the Gregorian
calendar is 1 BC as there was no year 0; years outside this
range may be specified as six digit years prefixed by + or
− but may only to used between environments which recog-
nise six digit years; note that, as there was no year 0 in the
Gregorian calendar, the year −000001 is 2 BC and 2000 BC
is the year −001999.

MM is the month of the year from 01 (January) to 12 (December).

DD is the day of the month from 01 to 31.

T indicates the beginning of the time element.

HH is the number of complete hours that have passed since mid-
night as two decimal digits from 00 to 24.

mm is the number of complete minutes since the start of the hour
as two decimal digits from 00 to 59.

ss is the number of complete seconds since the start of the minute
as two decimal digits from 00 to 59.

sss is the number of complete milliseconds since the start of the
second as three decimal digits.

Z is the time zone offset specified as "Z" (for UTC) or either "+"
or "-" followed by a time expression HH:mm

Note that T24.00 and T00.00 on successive days refer to the same
time.

Date();

returns a string representing the current UTC time.

A Date object may be created with

new Date();

or

new Date(n);

or

new Date(year,month[,date[,hours[,minutes[,seconds[,ms]]]]]);

The first creates an object whose primitiveValue internal
property holds the UTC value current time, the second an ob-
ject whose primitiveValue internal property holds the value n
milliseconds, the third an object whose primitiveValue internal
property holds the UTC value of the time specified in the argu-

ments.

The value of the length property of a date prototype is 0 and
the other properties can be accessed in the same ways as an object
(section 6.5).

21

11.1 Date object methods

d.getDate(); returns the local format date of a date

d.getUTCDate(); returns the UTC date of a date

d.getDay(); returns the local format day of the week of a date

d.getUTCDay(); returns the UTC day of the week of a date

d.getFullYear(); returns the local format year of a date

d.getUTCFullYear(); returns the UTC year of a date

d.getHours(); returns the local format hours of a date

d.getUTCHours(); returns the UTC hours of a date

d.getMinutes(); returns the local format minutes of a date

d.getUTCMinutes(); returns the UTC minutes of a date

d.getMonth(); returns the local format month of a date

d.getUTCMonth(); returns the UTC month of a date

d.getSeconds(); returns the local format seconds of a date

d.getUTCSeconds(); returns the UTC seconds of a date

d.getMilliseconds(); returns the local format milliseconds of a
date

d.getUTCMilliseconds(); returns the UTC milliseconds of a date

d.getTime(); returns the time value of a date

d.getTimezoneOffset(); returns the timezone offset in minutes
of a date

d.setDate(<date>); sets the value of the primitiveValue prop-
erty of a Date object to <date> after adjusting for local time

d.setUTCDate(<date>); sets the value of the primitiveValue
property of a Date object to <date>

d.setFullYear(year[,month[,date]]); sets the value of the
primitiveValue property of a Date object to that rep-
resented by the arguments adjusting for local time

d.setUTCFullYear(year[,month[,date]]); sets the value of the
primitiveValue property of a Date object to that repres-
ented by the arguments

d.setHours(hour[,min,[sec[,ms]]]); sets the value of the
primitiveValue property of a Date object to that rep-
resented by the arguments after adjusting for local time

d.setUTCHours(hour[,min[,sec[,ms]]]); sets the value of the
primitiveValue property of a Date object to that repres-
ented by the arguments

d.setMonth(month[,date]); sets the value of the primitiveValue
property of a Date object to that represented by the argu-
ments adjusting for local time

d.setUTCMonth(month[,date]); sets the value of the
primitiveValue property of a Date object to that rep-
resented by the arguments

d.setMinutes(min,[sec[,ms]]); sets the value of the
primitiveValue property of a Date object to that rep-
resented by the arguments after adjusting for local time

d.setUTCMinutes(min[,sec[,ms]]); sets the value of the
primitiveValue property of a Date object to that rep-
resented by the arguments

22

d.setSeconds(sec[,ms]); sets the value of the primitiveValue
property of a Date object to that represented by the argu-
ments after adjusting for local time

d.setUTCSeconds(sec[,ms]); sets the value of the primitiveValue
property of a Date object to that represented by the argu-
ments

d.setMilliseconds(n); sets the value of the primitiveValue prop-
erty of a Date object to n milliseconds after adjusting for
local time

d.setUTCMilliseconds(n); sets the value of the primitiveValue
property of a Date object to n milliseconds

d.setTime(<time>); sets the value of the primitiveValue
property of a Date object to <time>

d.toDateString(); returns the date in a human readable string
form

d.toLocaleDateString(); returns the local date in a human read-
able string form

d.toISOString(); returns the UTC date in the human readable
string form YYYY-MM-DDTHH:mm:ss.sssZ

d.toUTCString(); returns the UTC date in a human readable
string form, normally omitting the T

d.toJSON(k); returns a string representation of the date for use
with JSON.stringify (section 14); note that this method
can also be used with objects other than Date objects

d.toString(); returns the date and time in a human readable
string form

d.toLocaleString(); returns the local date and time in a human
readable string form

d.toTimeString(); returns the time in a human readable string
form

d.toLocaleTimeString(); returns the local time in a human read-
able string form

d.valueOf(); returns a number representing the value of a date

12 Regular expressions

A regular expression object may be created using

RegExp(<pattern>,<flags>);

or

new RegExp(<pattern>,<flags>);

Both use the function prototype object as their constructor and
so the RegExp prototype object does not have a valueOf property
(section 5.3).

Regular expressions have a source property containing the text
of the regular expression, a lastIndex property containing the po-
sition of the last match which initially has the value 0 and three
Boolean properties each of whose value is set to true if the cor-

23

responding flag is set:

g all matches (the global property)

i case insensitive (the ignoreCase property)

m include matches that cross line boundaries (the multiline
property).

Regular expression patterns can use all the escape characters (sec-
tion 8) except backspace plus any control character, for example

\cJ control-J

The regular expression operators are:

. any character other than a line ending

- range, for example a-z

^ any characters after

$ any characters before

[] any character within the brackets

[^] any character other than those within the brackets

\b a word boundary (i.e. between an ASCII word character and
a non-ASCII word character)

\B a boundary that is not a word boundary

[\b] backspace

\d any ASCII digit

\D any character other than an ASCII digit

\s any Unicode whitespace

\S any character other than Unicode whitespace

\w any ASCII word character (=[a-zA-Z0-9])

\W any character other than an ASCII word character

(?=<p>) a pattern with pattern <p> following

(?!<p>) a pattern where pattern <p> does not follow

Searches may be elaborated with

| OR

() group elements or enclose an optional element in the pattern

(?:) group elements but ignore them in the search

\n the nth group in the pattern

Searches may be limited with

{n} the first n occurrences, for example {\d{4}} four digits in a
row

{n,} at least n occurrences

{n,m} at least n but not more than m occurrences

* = {0,}

+ = {1,}

? = {0,1} i.e. does not match each repeated occurrence of a
pattern

24

12.1 Regular expression methods

r.exec(s) returns an array containing the results of matching s
against the regular expression plus matches of any par-
enthesised patterns and sets the properties index and
lastIndex to the position of the match and the position
of the last match respectively, enabling it to undertake re-

peated searches starting from lastIndex or returns null if
there were no matches and sets lastIndex to 0

r.test(s) returns true if there is a match between s and the reg-
ular expression

r.toString() returns a string value containing the regular expres-
sion and the flags concatenated

13 Error objects

Error("<message>");

and

new Error("<message>");

both create an Error object whose message internal property
holds the value of the message and whose name internal property
is initialised as "Error".

e.toString() returns the value of the message property or, if that
is undefined, the value of the name property.

Whenever a runtime error occurs, one of the following
native Error objects is called: EvalError, RangeError,
ReferenceError, SyntaxError, TypeError, URIError. Their
prototypes are the error object prototype and they do not have
an e.toString() method.

14 JSON

A JSON object has two functions:

JSON.parse(t[,k,v]) which converts a JSON string into a Javas-
cript object substituting v wherever it encounters k and v
as a key/value pair in the JSON string

JSON.stringify(<object>[,<replacer>[,<space>]]) which
converts an object’s properties into a string, optionally mod-
ified by a function or selected according the properties of a

number or string array specified as the <replacer> and/or
with additional space to improve human readibility

It does not have a construct or a call property and so cannot
be used as a constructor or as a function.
Note that

• a cyclic structure will throw a TypeError

25

• a JSON string is a comma separated list of properties en-
closed in braces

• properties consist of property names wrapped in double
quotes followed by a colon followed by their vale

• strings are wrapped in double quotes

• numbers are represented as strings

• NaN and Infinity are represented as null in number strings

• arrays consist of a list of comma separated values enclosed
in brackets

• functions and undefined values are represented as null in
arrays but are not otherwise represented in JSON strings.

15 Statements

Statements are executed and return a completion value. State-
ments conclude with a semi-colon; ergo more than one statement
may be on a line. Where a semi-colon has been omitted, Javas-
cript will interpolate one wherever it allows successive statements
to be parsed but this can lead to unexpected results.
Comments within a statement are not executed if they are pre-

ceded by // and appended to a line; otherwise, they must be
enclosed in /* ... */ in which case new lines must begin with
*.
A statement may have a label which can be used to call it from

elsewhere in the Javascript code, for example

<label>: {<(list of)statement(s)>};

Labels may commence with a letter, an underscore or a dollar
sign.

If the first line of a statement is use strict, Javascript strict
mode is used meaning, among other things, that all variables must
be declared and certain expressions which might otherwise be ig-
nored generate a TypeError.

15.1 Declaring variables
Variables may be declared without an assigned value but it is
good practice always to declare variables as this aids debugging,
for example

var v = v;

declares a variable v and assigns the value v to it (use "" to enclose
string values).

var v = prompt(" ");

opens a prompt box and assigns any value entered in it to v.
Variables may commence with a letter, an underscore or a dollar

sign.
A declaration using an existing variable name is treated as an

assignment to the existing variable.
Numbers, strings, Boolean values, property/value pairs, arrays

or functions may be assigned to variables. For example, an object
may be declared with:

var <name> = {

26

<property>: v,
<property>: v,
...

};

as in

var book = {

topic: "JavaScript",
fat: true

};

You can also use constructor functions (section 6.3), for example

var book = new Object {

topic: "JavaScript",
fat: true

};

A variable can take a function as its value, for example

var <name> = <function> (<parameters>) {

<statement(s)>

};

Variables declared within a function or a for statement have local
scope; all others have global scope.

15.2 Conditionals

if(condition expression){

return <result of statement>;

}
if(condition expression){

return <result of statement>;
else {

return <result of statement>;
}

}

if statements may be nested in else statements producing "elseif"
switches or switch may be used, for example

switch(<expression>) {

case <expression>: <statement(s)>; break;
case <expression>: <statement(s)>; break;
case <expression>: <statement(s)>; break;
...
default: <statement(s)>; break;

}

<expression> may be a number or a string.

15.3 Flow control
do{<statement>
} while(condition expression);

27

while(condition expression){
<statement>
};

for(<initialisation>;<test>;<increment>){
<statement>
}:

for(var <declaration>;<expression>;<expression>){
<statement>
};

for(<expression> in <expression>){
<statement>
};

for(var <declaration> in <expression>){
<statement>
};

Note that

• variables declared within a for statement have local scope

• for in enumerates variables according to the order of cre-
ation of the objects unless the object is an array in which
case it uses the row/column order of the array.

With all statements, you can use

return;

to end the execution of the statement or

return <expression> ;

to end the execution of the statement after returning the value of
the expression.
With labelled statements, you can also use:

continue <label>;

or

break <label>;

to jump to the labelled statement even from within a loop. Each
can be used without a label if there is an implicit label within the
loop.

28

15.4 Exception and error handling
throw <expression>;

tells the user that an error has occurred.

try{ <statement(s)>
};
[catch(<error code>){ <statement(s)>
};]

executes if try throws an exception identifiable by an error code
(which may not be eval or arguments in strict mode).

[finally{
<statement(s)>
};]

if present, always executes after a try statement where there are
no catch statements or if the catch statements fail.

debugger;

calls any debugging software which may be available to monitor
the code.

29

Part II
The host environment
16 Host environment objects

The host environment must provide at least the following ob-
jects (Hickson, 2013, 2014):

• BarProp containing a Boolean attribute visible which is
true if a locationbar/menubar/personalbar/scrollbar/
statusbar/toolbar is visible4

• canvas objects (section 24 on page 47)

• collection objects (section 21 on page 39)

• data objects such as File, Blob, FileList and ImageData

• data transfer objects such as DataTransfer,
DataTransferItem and DataTransferItemList

• Date (section 11 on page 20)

• Document (section 18 on page 35) along with

– DocumentFragment to hold the contents of <template>
elements

– DOMElementMap representing the current CSS element
reference identifiers; has methods for getting, setting
and deleting name-value pairs

• DragEvent (section 31 on page 75)

• HTMLElement objects for each HTML element (sections 22
on page 41, 25 on page 59, 24 on page 47, 26 on page 66
and 27 on page 68); other element related objects include

– DOMString object whose primitiveValue property
holds a string of 16 bit unsigned integers

– DOMStringMap object for the element’s data-* attrib-
utes; has methods for getting, setting and deleting
name-value pairs

– DOMSettableTokenList
– DOMTokenList

• event objects, such as MouseEvent, (section 32 on page 76)

• form element objects (section 27 on page 68) including

– FileList object listing the selected files of the form
control

– HTMLOptionElement
– HTMLSelectElement
– RadioNodeList

• Function (section 6 on page 10)

• History (section 28 on page 71)

• image objects such as
4Being considered for removal (July 2013)

30

– CanvasImageSource
– HTMLCanvasElement
– ImageBitmap which may have been obtained from

an , <video> or <canvas> element or a
Blob, ImageData, CanvasRenderingContext2D or
ImageBitmap object

• Location (section 29 on page 72)

• media element objects (sections 25 on page 59, 25.3 on
page 62, 25.4 on page 62, 25.5 on page 65 and 25.6 on
page 65) along with objects such as

– MediaController
– MediaError
– TimeRanges

• Navigator (section 30 on page 73)

• NodeList

– PropertyNodeList containing a list of nodes
which match a specific property in an
HTMLPropertiesCollection (section 21 on page 39)
array object

• Screen the CSS screen object

• Storage (section 38 on page 86)

• SVGMatrix

• transferable objects such as:

– ArrayBuffer and ArrayBufferView

– CanvasProxy
– MessagePort

• ValidityState (section 34 on page 82)

• WebSocket (section 37 on page 85)

• Window

– WindowProxy
– WindowTimers

• webworker objects (section 36 on page 83).

Note: ApplicationCache (section 35 on page 83) is now de-
precated.

<modulePromise>=import(specifier) returns a promise for the
module namespace object for the module script identified by
specifier. This allows dynamic importing of module scripts
at runtime, instead of statically using the import statement
form. The specifier will be resolved relative to the active
script’s base URL. The returned promise will be rejected if
an invalid specifier is given, or if a failure is encountered
while fetching or evaluating the resulting module graph.
This syntax can be used inside both classic and module
scripts. It thus provides a bridge into the module-script
world, from the classic-script world.

<origin>=self.origin returns the global object’s origin, serialized
as string.

<url>=import.meta.url Returns the active module script’s base
URL. This syntax can only be used inside module scripts.

31

17 The window object

Each open window, tab or <iframe> element in all the browsers
open on a device has its own Window object; this is the global
object in client side Javascript. While those open in windows or
tabs are independent of each other, those opened in <iframe>
elements are not.

17.1 Window object properties

Each <iframe> element has the properties.

w[n] returns the nth child browsing context

w[name] returns the named window; prefer d.getElementById();
see page 37

w.closed returns true if the window has been closed, false oth-
erwise.

w.contentWindow returns the value of the name of the
<iframe>’s Window object — the same as the value of the
name=" " attribute, if any, of the <iframe> element

w.document returns the Document object associated with the
Window object

w.frameElement returns the the value of the <iframe>’s element
object or null if there isn’t one

w.frames returns the current Window object of a child frame

w.length returns the number of child browsing contexts.

w.localStorage returns the Storage object associated with the
window’s local storage

w.locationbar.visible returns true if the location bar is visible;
otherwise, returns false

w.menubar.visible returns true if the menu bar is visible; other-
wise, returns false

w.name[=v] returns or sets the name of the Window object

w.parent returns the WindowProxy for the parent browsing con-
text; the same as self in a top-level window, the parent
Window object of an <iframe> element

w.personalbar.visible returns true if the personal bar is visible;
otherwise, returns false

w.scrollbars.visible returns true if the scroll bars are visible; oth-
erwise, returns false

w.self the same as the window property

w.sessionStorage returns the Storage object associated with the
window’s session storage

w.statusbar.visible returns true if the status bar is visible; oth-
erwise, returns false

w.toolbar.visible returns true if the toolbar is visible; otherwise,
returns false

w.top returns the WindowProxy for the top-level browsing con-
text; the same as self in a top-level window, the top-level
parent Window object of an <iframe> element

w.window the current Window object

32

17.2 Window object methods
self.clearInterval(handle) cancels the timeout set with

setInterval() or setTimeout() identified by handle (see
page 34).

self.clearTimeout(handle) cancels the timeout set with
setTimeout() or setInterval() identified by handle (see

page 34).

w.alert(<message>); displays the given message and
waits for the user to dismiss it; calls the
navigator.yieldForStorageUpdates() method

w.close(); closes the window.

w.customElements.define(name,constructor) defines a new custom element, mapping the given name to the given constructor as
an autonomous custom element.

w.customElements.define(name,constructor,{extends:baseLocalName}) defines a new custom element, mapping the given name
to the given constructor as a customized built-in element for the element type identified by the supplied baseLocalName.

w.customElements.get(name) retrieves the custom element con-
structor defined for the given name.

w.customElements.upgrade(root) tries to upgrade all shadow-
including inclusive descendant elements of root, even if they
are not connected.

w.customElements.whenDefined(name) returns a promise that
will be fulfilled when a custom element becomes defined with
the given name. (If such a custom element is already defined,
the returned promise will be immediately fulfilled.)

w.focus(); focuses the window; use of this method is discouraged;
allow the user to control window focus instead

<window>=w.open([url[,target[,features]]]); opens a window
to show url (defaults to about:blank), and returns it:

• target argument gives the name of the new window;
if a window exists with that name already, it is reused

• features argument can be used to influence the ren-
dering of the new window

w.opener[=v] returns the WindowProxy for the opener browsing
context or null if there isn’t one or if it has been set to
null. Can be set to null.

w.postMessage(message[, options]) posts a message to the
given window; messages can be structured objects, for ex-
ample, nested objects and arrays, can contain JavaScript
values (strings, numbers, Dates, etc), and can contain
certain data objects such as File, Blob, FileList, and
ArrayBuffer objects; objects listed in transfer are trans-
ferred, not just cloned, meaning that they are no longer
usable on the sending side. A target origin can be specified
using the targetOrigin member of options. If not provided,
it defaults to "/". This default restricts the message to
same-origin targets only. If the origin of the target window
doesn’t match the given target origin, the message is dis-
carded, to avoid information leakage. To send the message
to the target regardless of origin, set the target origin to
"*".

w.postMessage(<message>,targetOrigin[,transfer]); an al-

33

ternate version of postMessage() where the target origin
is specified as a parameter. Calling w.postMessage(message,
target, transfer) is equivalent to w.postMessage(message,
{targetOrigin, transfer})

w.print(); prompts the user to print the page; calls the
navigator.yieldForStorageUpdates()

self.queueMicrotask(callback) queues a microtask to run the
given callback.

w.stop(); cancels the document load

<handle>=self.setInterval(code[,timeout]) schedules a
timeout to compile and run code every timeout milli-
seconds.

<handle>=self.setInterval(handler[,timeout[,arguments...]])
schedules a timeout to run handler every timeout milli-
seconds. Any arguments are passed straight through to the
handler.

<handle>=self.setTimeout(code[,timeout]) schedules a
timeout to compile and run code after timeout milliseconds.

<handle>=self.setTimeout(handler[,timeout[,arguments...]])
schedules a timeout to run handler after timeout milli-
seconds. Any arguments are passed straight through to the
handler.

<promise>=self.createImageBitmap(image[,options]);

<promise>=self.createImageBitmap(image[,sx,sy,sw,sh]);
takes an image, which can be an element, <video>,

or <canvas> element, a Blob object, an ImageData ob-
ject, a CanvasRenderingContext2D object or another
ImageBitmap object, and returns a Promise that is resolved
when a new ImageBitmap is created; if no ImageBitmap
object can be constructed, the promise is rejected; if sx,
sy, sw, and sh arguments are provided, the source image
is cropped to the given pixels, with any pixels missing in
the original replaced by transparent black; using the source
image’s pixel coordinate space, not CSS pixels

<result>=self.atob(data); takes a Unicode string containing
base64-encoded binary data, decodes it, and returns a string
consisting of characters in the range U+0000 to U+00FF, each
representing a binary byte with values 0x00 to 0xFF respect-
ively, corresponding to that binary data

<result>=self.btoa(data); takes a Unicode string containing
only characters in the range U+0000 to U+00FF, each repres-
enting a binary byte with values 0x00 to 0xFF respectively,
and converts it to its base64 representation, which it returns

<result>=w.confirm(<message>); displays an OK/Cancel
prompt with the given message, waits for the user
to dismiss it, and returns true if the user clicks
OK and false if the user clicks Cancel; calls the
navigator.yieldForStorageUpdates() method

<result>=w.prompt(<message>[,default]); displays a
prompt with the given message, waits for the user to dis-
miss it, and returns the value that the user entered; if
the user cancels the prompt, then returns null instead;
if default is present, this is used as a default; calls the
navigator.yieldForStorageUpdates() method

34

18 The document node

The Document object is central to the Document Object Model
API, a tree structure for representing the elements in HTML; it
can be accessed using the Document object.
Each HTML document has a documentType node which is the

parent of all the nodes in the document each of which has an as-
sociated object. A NodeList is a read-only array like object. The
following properties of the documentType node are inherited by
all nodes in a document:

18.1 Document node properties
d.childNodes a NodeList of child nodes

d.firstChild the first node or null if the node has no children

d.lastChild the last node or null if the node has no children

d.localName

d.namespaceURI

d.nextSibling the next sibling node, in the order in which they
appear in the document

d.nodeName the tag value of an HTML element in uppercase

d.nodeType holds the values

1 for an element node
3 for a text node
8 for a comment node
9 for a document node

d.nodeValue the textual content of a text (section 23) or
comment node

d.ownerDocument

d.parentNode holds the parent node or null if it is the Document
object

d.previousSibling the previous sibling node, in the order in which
they appear in the document

Unnecessary whitespace in an HTML document can create addi-
tional child nodes in the DOM, leading to unintended consequences
when using these properties.

18.2 Node methods

n.appendChild(n); appends or moves node n to the end of the
NodeList of an element

n.cloneNode(n); creates a copy of an existing node

n.insertBefore(n[,n]); inserts node n, which may be an existing
or a new child node, before child node n of a NodeList or
at the end if [n] is not specified

n.parentNode.removeChild(n); removes child node n in the
NodeList from a node

n.parentNode.replaceChild(<node>,n); replaces node n in the
NodeList with <node>

35

19 The document object

19.1 Document properties
To find a document’s position, see section 22.

d.activeElement returns the currently focused element

d.body[=v] returns or sets the first child of an <html> element,
provided it is a <body> or <frameset> element

d.commands returns an HTMLCollection array object of the ele-
ments in the document that define commands and have IDs.

d.cookie[=v] returns or sets the cookies associated with the doc-
ument

d.currentScript returns the <script> element that has most re-
cently started executing or null

d.defaultView returns the Window object of the active document

d.designMode[=v] returns or sets on if the document is editable,
and off if it isn’t; focuses the document and resets the se-
lection in that document

d.dir[=v] returns or sets the value of the <html> element’s dir="
" attribute, if any, to ltr, rtl or auto, replacing the existing
value; does nothing if the <html> element does not exist

d.domain[=v] returns the current domain used for security
checks; can be set to a value that removes subdomains, to
change the effective script origin to allow pages on other sub-
domains of the same domain (if they do the same thing) to
access each other (except in sandboxed <iframe> elements

d.embeds returns an HTMLCollection array object of the
<embed> elements in the document (=document.plugins)

d.forms returns an HTMLCollection array object of the <form>
elements in the document

d.forms.v returns the <form> element whose id or name con-
tains v

d.head returns the <head> element of the document

d.images returns an HTMLCollection array object of the
elements in the document

d.lastModified returns when the document was last modified in
MM/DD/YYYY hh:mm:ss format or the current time if it has
not been modified

d.links returns an HTMLCollection array object of the <a> and
<area> elements in the document that have href=" " attrib-
utes

d.localStorage returns the Storage object assigned for local stor-
age

d.plugins returns an HTMLCollection array object of the <embed>
elements in the document (=document.embeds)

d.readyState returns loading, interactive (when it has loaded
but is still loading sub-resources) or complete

d.referrer returns the address of the document from which the
user navigated to this one; in the case of an HTML doc-
ument, it matches the Referer (sic) header that was sent
when fetching the page (the HTML noferrer link type may
be used to block this behaviour)

d.scripts returns an HTMLCollection array object of the
<script> elements in the document

36

d.sessionStorage returns the Storage object assigned for session
storage; each Document object must have a separate object
for its Window’s sessionStorage attribute

d.title[=v] or

title.text[=v] returns, or sets, if the root element is not an
SVGDocument, the value of the <title> element of the doc-
ument

19.2 Document methods
createDocument();

createHTMLDocument();

d.close(); closes the input stream that was opened by the
d.open() method

d.defaultView returns the Window object of the active document.

d.designMode[=v] sets or returns the document’s current state
which may be "on" if the document is editable, and "off" if
it isn’t, which focuses the document and resets the selection
in that document.

d.createElement("tag"); creates a new <tag> element

d.createElementNS("URI","tag"); creates a new <tag> ele-
ment in the namespace specified by URI

d.createTextNode("v"); creates a new text node whose value is
"v"

d.getElementById("v"); returns the element whose id="v"

d.getElementsByClassName(v1,v2,. . .); returns an array con-
taining the elements whose class="v1", "v2" . . . which is
dynamically updated

d.getElementsByTagName("tag"); returns an array containing
the elements whose name is <tag> in the document; tag is
case insensitive because HTML tags are case insensitive; the
array is dynamically updated and individual elements can be
accessed in the same manner as elements in any array

d.hasFocus(); returns true if the document has focus; otherwise,
returns false

d.querySelector(v); returns the first element whose CSS se-
lector="v" or null

d.querySelectorAll(v); returns an array, which may be empty,
containing the elements whose CSS selector = "v" which is
not dynamically updated

d.write(); adds the given string(s) to the document’s input
stream; however, this method is unreliable and use of it is
discouraged

d.writeln(); adds the given string(s) terminated by a line feed to
the document’s input stream

documentOrShadowRoot.activeElement returns the deepest
element in the document through which or to which key
events are being routed. This is, roughly speaking, the fo-
cused element in the document.

<d>=d.open([type[,replace]]); replaces the existing document
as if it was a new Document object, but reusing the previ-
ous object, which is then returned; type may be text/html
(the default) in which case the HTML parser is used to
parse document.write(); otherwise, content is parsed as
plain text; if replace is present, the Window, Location,
History, ApplicationCache, and Navigator, objects, the
various BarProp objects, the two Storage objects and the
various HTMLCollection array objects are replaced

37

<d>=embed.getSVGDocument()

<d>=iframe.getSVGDocument()

<d>=object.getSVGDocument() returns the document object,
in the case of embed, iframe, or object elements being used
to embed SVG images.

<d>=parser.parseFromString(string,type) parses a string of

type "text/html" using the HTML parser and returns the
resulting Document.

<parser>=new DOMParser() constructs a new DOMParser
object.

<w>=d.open(url,name,features); = window.open() method
(see page 33)

20 The element node

Each HTML element has an element node which is the parent
of all the nodes in the element each of which has an associated
object. A NodeList is a read-only array like object. The following
properties of the element node are inherited by all nodes in an
element:

20.1 Element node properties

e.childElementCount returns the number of child elements in the
element

e.children returns a NodeList of element child nodes in the ele-
ment

e.children.length returns the number of child elements in the ele-
ment

e.firstElementChild returns the first element node or null if the
node has no children

e.lastElementChild returns the last element node or null if the
node has no children

e.nextElementSibling returns the next element sibling node, in
the order in which they appear in the document

e.previousElementSibling returns the next element sibling node,
in the order in which they appear in the document

e.tagName

20.2 Element node methods
select.add(e[,before]); inserts an element before the node given

by before which can be a number, in which case element
is inserted before the item with that number, or an element
from the list of options, in which case element is inserted be-
fore that element; if before is omitted, null, or a number
out of range, then element will be added at the end of the
list

38

21 Collection objects

Collection objects include:

• HTMLCollection5 which defines the object’s supported
property indices

• HTMLFormControlsCollection defining the elements in a
<form> or <fieldset> element

• HTMLOptionsCollection defining the <option> elements in
a <select> element

• HTMLPropertiesCollection array object which contains all
the properties of an element

21.1 Collection object properties
c[n] returns the element or item with index n from the collection;

the items are sorted in tree order

c[n]=e where nmatches the index of an option element in the col-
lection, it replaces the option element with element; where
element=NULL, the option element is empty; where n is
greater than the number of objects in the collection, adds a
new option element to the container;

c[name] returns

• an HTMLCollection array object containing all
those <a>, <area>, <embed>, <form>, <frameset>,
<iframe>, , <input>, <map>, <meta>, <object>,
<select> or <textarea> elements,6

• a RadioNodeList object containing all those elements
in an HTMLFormsCollection object

• the first matching object from an HTMLOptions
Collection array object or

• a PropertyNodeList object containing any elements
that add a property named name; the name index has
to be one of the values listed in name=" "

whose id="name" or whose name="name" from the collection

c.length returns the number of elements in the collection

c.length[=v] returns or sets the number of elements in an
HTMLOptionsCollection array object, truncating the num-
ber of <option> elements if v is smaller, or adding new blank
<option> elements if v is larger, than the existing number
of <option> elements but without adding or removing any
<optgroup> elements though it may remove children from
them

c.names returns an array of the property names of the elements
in an HTMLPropertiesCollection array object

c.selectedIndex[=v] returns or sets the index of the first selec-
ted item, if any, or −1 if there is no selected item, in an
HTMLOptionsCollection array object

radioNodeList.v[=v] returns or sets the value of the first checked
radio button represented by the object

select.options returns an HTMLOptionsCollection array object
of the list of options.

select.selectedOptions returns an HTMLCollection array object
of the list of options that are selected.

5HTMLAllCollection is retained for legacy reasons (Hickson, 2013, 2.7.2.1)
6also the deprecated elements <applet> and <frame>.

39

21.2 Collection object methods
c(n); returns the item with index n from the collection; the items

are sorted in tree order

c(name); returns

• an HTMLCollection array object containing all
those <a>, <area>, <embed>, <form>, <frameset>,
<iframe>, , <input>, <map>, <meta>, <object>,
<select> or <textarea> elements,7

• a RadioNodeList object containing all those elements
in an HTMLFormsCollection object or

• the first matching object from an HTMLOptions
Collection array object

whose id="name" or whose name="name" from the collection

c.add(e[,before]); inserts an element into an HTMLOptions
Collection array object before the node given by before
which can be

• a number, in which case element is inserted before the
item with that number, or

• an element from the collection, in which case element
is inserted before that element

if before is omitted, null, or a number out of range, then
element will be added at the end of the list

c.remove(n); removes the item with index n from the collection

propertyNodeList.getValues(); returns an array of the values of
an HTMLPropertiesCollection array object

<c>=c.item(n); returns the element or item with index n from
the collection; the items are sorted in tree order

<c>=c.item(name); or

<c>=c.namedItem(name); returns an HTMLCollection array
object containing all those <a>, <area>, <embed>, <form>,
<frameset>, <iframe>, , <input>, <map>, <meta>,
<object>, <select> or <textarea> elements8 whose
id="name" or whose name="name" from the collection

<c>=c.tags(tagName); returns a collection that is a filtered
view of the current collection, containing only elements with
the given tag name

<c>=d.getElementsByName(v); returns a NodeList object of
the elements whose name="v" which is dynamically updated

Note that the name=" " value of a <form> or element
becomes a property of the Document object and the name="
" value of an <iframe> a property of the Window object and
so are returned by document.v or window.v

<e>=c.item(n); or

<e>=c[n]; returns the element or item with index n from the
collection; the items are sorted in tree order

<e>=c.item(name); or

<e>=c.namedItem(name); or

<e>=c[name]; returns
7also the deprecated elements <applet> and <frame>.
8also the deprecated elements <applet> and <frame>.
9also the deprecated elements <applet> and <frame>.

40

• the item from a collection containing <a>, <area>,
<embed>, <form>, <frameset>, <iframe>, or
<object> elements9 or

• the first matching object from an HTMLOptions
Collection array object

whose id="name" or whose name="name"

<nodeList>=c.namedItem(name); returns the first matching
object from an HTMLOptionsCollection array object whose

id="name" or whose name="name"

<propertyNodeList>=c.namedItem(name); returns a Property
NodeList object containing any elements that add a prop-
erty named name

<radioNodeList>=c.namedItem(name); returns the item
whose id="name" or whose name="name" from an
HTMLFormsCollection array object

22 Element objects

HTMLElement objects represent HTML elements in a document;
each has a CSSStyleDeclaration CSS object for the element’s
style=" " attribute; some elements can have alternatives to the
HTMLElement object:

• HTMLHtmlElement for <html> elements (=documentElement)

• HTMLHeadElement for <head> elements

• HTMLTitleElement for <title> elements

• HTMLBaseElement for <base> elements

• HTMLLinkElement for <link> elements

• HTMLMetaElement for <meta> elements

• HTMLStyleElement for <style> elements

• HTMLScriptElement for <script> elements

• HTMLTemplateElement for <template> elements

• HTMLBodyElement for <body> elements

• HTMLHeadingElement for <h1>--<h2> elements

• HTMLParagraphElement for <p> elements

• HTMLHRElement for <hr> elements

• HTMLPreElement for <pre> elements

• HTMLQuoteElement for <blockquote> and <q> elements

• HTMLOListElement for elements

• HTMLUListElement for elements

• HTMLLIElement for elements

• HTMLDListElement for <dl> elements

• HTMLDivElement for <div> elements

• HTMLAnchorElement for <a> elements

• HTMLDataElement for <data> elements

41

• HTMLTimeElement for <time> elements

• HTMLSpanElement for elements

• HTMLBRElement for
 elements

• HTMLModElement for <ins> and elements

• HTMLImageElement for elements

• HTMLIFrameElement for <iframe> elements

• HTMLEmbedelement for <embed> elements

• HTMLObjectElement for <object> elements

• HTMLParamElement for <param> elements

• HTMLMapElement for <map> elements

• HTMLAreaElement for <area> elements

• HTMLOutputElement for <output> elements

• HTMLProgressElement for <progress> elements

• HTMLMeterElement for <meter> elements

• HTMLDetailsElement for <details> elements

• HTMLMenuElement for <menu> elements

• HTMLDialogElement for <dialog> elements

• HTMLSlotElement for <slot> elements

• HTMLCanvasElement for <canvas> elements

See ValidityState object for the ValidityState object properties.

22.1 Element object properties
HTML attributes and CSS values, other than those which are also
reserved words in Javascript, become properties of elements and
can be queried or modified using Javascript. Wherever an HTML
attribute contains a space or a CSS value contains a hyphen, this
is removed and the succeeding letter capitalised.
Other than for class, HTML attributes which are reserved

words in Javascript are preceded by html, for example, htmlFor
corresponds to the for attribute of a <label> element.

a.text returns the plain text of the <a> element

e.accessKeyLabel exposes the Access Key facet of the command

e.autocapitalize[=v] returns or sets the current autocapitalisa-
tion state

e.classList returns the DOMTokenList for the element

e.contentEditable[=v] returns or sets true, false or inherit
based on the state of the contenteditable attribute

e.dataset returns a DOMStringMap object for the element’s
data-* attributes, converting hyphenated names to
camel-cased; for example, data-foo-bar=" " becomes
element.dataset.fooBar.

e.draggable[=v] returns or sets true if the element is draggable;
otherwise, returns false

e.innerHTML returns the HTML content of an element

e.innerText[=v] returns or sets the text content of an element;
line breaks are converted to
 elements

e.isContentEditable returns true if the element is editable; oth-
erwise, returns false

42

e.itemValue[=v] returns or sets the value of an element with an
itemprop attribute

e.nonce returns or sets the value of the element’s
[[CryptographicNonce]] internal slot.

e.outerHTML

e.properties returns an HTMLPropertiesCollection array object
with all the properties on an element with an itemscope at-
tribute; otherwise, an empty HTMLPropertiesCollection
array object

e.selectionDirection[=v] returns or sets the current direction of
the selection using one of the values forward, backward or
none

e.selectionEnd[=v] returns the offset to the end of the selection
or sets the offset to change the end of the selection

e.selectionStart[=v] returns the offset to the start of the selec-
tion or sets the offset to change the start of the selection

e.spellcheck[=v] returns or sets true if the element is to have its
spelling and grammar checked; otherwise, returns false

e.style returns a CSSStyleDeclaration CSS object for the ele-
ment’s style=" " attribute

e.style.<cssText> sets or modifies the value property of
the CSSStyleDeclaration CSS object, for example:

e.style.fontSize="24pt";

e.validationMessage returns the error message that would be
shown to the user if the element was to be checked for valid-
ity

e.validity.badInput returns true if the user has provided input in
the user interface that the user agent is unable to convert to
a value; false otherwise

e.validity.customError returns true if the element has a custom
error; false otherwise

e.validity.patternMismatch returns true if the element’s value
doesn’t match the provided pattern; false otherwise

e.validity.rangeOverflow returns true if the element’s value is
higher than the provided maximum; false otherwise

e.validity.rangeUnderflow returns true if the element’s value is
lower than the provided minimum; false otherwise

e.validity.stepMismatch returns true if the element’s value
doesn’t fit the rules given by the step attribute; false oth-
erwise

e.validity.tooLong returns true if the element’s value is longer
than the provided maximum length; false otherwise

e.validity.tooShort returns true if the element’s value, if not an
empty string, is shorter than the provided minimum length;
false otherwise

e.validity.typeMismatch returns true if the element’s value is not
in the correct syntax; false otherwise

e.validity.valid Returns true if the element’s value has no validity
problems; false otherwise

e.validity.valueMissing returns true if the element has no value
but is a required field; false otherwise

e.willValidate returns true if the element will be validated when
the form is submitted; false otherwise

43

i.complete returns true if the image has been completely down-
loaded or if no image is specified or available; otherwise,
returns false

i.currentSrc returns the URL of the image

i.naturalWidth

i.naturalHeight returns the intrinsic dimensions of the image, or
zero if the dimensions are not known

i.width[=n]

i.height[=n] returns or sets the actual rendered dimensions of the
image, or zero if the dimensions are not known

imageBitmap.height returns the intrinsic height of the image, in
CSS pixels

imageBitmap.width returns the intrinsic width of the image, in
CSS pixels

map.areas returns an HTMLCollection array object of the <area>
elements in the map.

script.text[=v] returns or sets the child text content of an ele-
ment

slot.name returns or sets the slot’s name.

slot.assignedNodes() returns the slot’s assigned nodes.

slot.assignedNodes({flatten:true}) returns the slot’s assigned
nodes, if any, and slot’s children; otherwise, and does the
same for any slot elements encountered therein, recursively,
until there are no slot elements left.

slot.assignedElements() returns the slot’s assigned nodes, lim-
ited to elements.

slot.assignedElements({flatten:true}) returns the same as
assignedNodes({flatten:true}), limited to elements.

template.content returns the contents of a <template> element
which are stored in a DocumentFragment object associated
with a different document so as to avoid the template con-
tents (form controls from being submitted, scripts from ex-
ecuting, and so forth) interfering with the main document

v.videoHeight returns the intrinsic height of the video in CSS
pixels, or zero if the height is not known

v.videoWidth returns the intrinsic width of the video in CSS
pixels, or zero if the width is not known.

22.2 Element methods

dialog.close([result]); closes the <dialog> element; result, if
provided, provides a return value

dialog.requestFullscreen(]);

dialog.returnValue[=result] returns or sets the <dialog> ele-
ment’s return value

dialog.show(); displays the <dialog> element

dialog.showModal(); displays the <dialog> element and makes
it the top-most modal dialog; this method honours the
autofocus attribute

e.attachInternals() returns an ElementInternals object targeting
the custom element element. Throws an exception if ele-
ment is not a custom element, if the "internals" feature
was disabled as part of the element definition, or if it is called
twice on the same element.

44

e.blur(); unfocuses the element; use of this method is discouraged;
focus another element instead

e.click(); triggers the Action of the command

e.focus([{preventScroll:true}]); focuses the element; if
preventScroll is true, the element does not scroll into
view

e.getAttribute("name"); returns the value of an HTML attrib-
ute as a string

e.hasAttribute("name"); returns true if an HTML element has
an HTML attribute

e.removeAttribute(); removes an HTML attribute

e.select(); selects everything in the text field

e.select.item(n) returns the item with index n from the list of
options

e.select.namedItem(name) returns the first item with name
from the list of options

e.setCustomValidity(<message>); sets a custom error, so that
the element would fail to validate; message is the message
to be shown to the user when reporting the problem to the
user; if empty, it clears the custom error

e.setRangeText(replacement[,start,end[,selectionMode]]);
replaces a range of text with the new text; if the start
and end arguments are not provided, the range is assumed
to be the selection; selectionMode determines how the
selection should be set after the text has been replaced:

• select selects the newly inserted text

• start moves the selection to just before the inserted
text

• end moves the selection to just after the selected text

• preserve (the default) sttempts to preserve the selec-
tion

e.setSelectionRange(start,end[,direction]); changes the selec-
tion to cover the given substring in the given direction; if
the direction is omitted, it will be reset to be the platform
default (none or forward)

embed.getSVGDocument() returns the Document object being
used for SVG images in an <embed> element

i.decode() causes the user agent to decode the image in paral-
lel; "EncodingError" DOMException will be returned if the
image cannot be decoded

imageBitmap.close() releases imageBitmap’s underlying bitmap
data.

<i>=new Image([width[,height]]); returns a new ele-
ment, with the width and height attributes set to the values
passed in the relevant arguments, if applicable

45

<option>=new Option([text[,v[,defaultSelected[,selected]]]]); returns a new <option> element where

• text sets the contents of the element
• v sets the value attribute
• defaultSelected sets the selected attribute
• selected sets whether or not the element is selected; if it is omitted, even if the defaultSelected argument is true, the

element is not selected

<valid>=e.checkValidity() returns true if the element’s value
has no validity problems

<valid>=e.reportValidity() returns true if the element’s value
has no validity problems and, if the event is not cancelled,
reports this to the user; false otherwise in which case it
fires an invalid event at the element

22.3 Child element methods
e.getElementsByClassName(v1,v2,. . .); returns an array con-

taining the child elements whose class="v1" or "v2" . . .
which is dynamically updated

e.getElementsByTagName(tag); returns an array containing
the child elements whose name is <tag> in the element; tag
is case insensitive because HTML tags are case insensitive;
the array is dynamically updated and individual elements

can be accessed in the same manner as elements in any ar-
ray

e.querySelector(v); returns the first child element whose CSS se-
lector = v or null

e.querySelectorAll(v); returns an array, which may be empty,
containing the child elements whose CSS selector = v which
is not dynamically updated

23 The text node

23.1 Text node properties

n.textContent returns the plain text of an element

46

24 Canvas element objects
Canvas element objects include CanvasRenderingContext2D,

CanvasDrawingStyles, CanvasGradient, CanvasPathMethods,
CanvasPattern, DrawingStyle, Path, TextMetrics and
WebGLRenderingContext.

To enable a script to access the <canvas> element, it must have
an id=" " attribute; for example,

<canvas id="a">

creates the variable a_canvas which can be located in the DOM
with

var a_canvas=document.getElementById("a");

and can be manipulated with <id>_context.<expression>.

canvas.height returns height of the current canvas element

canvas.width returns width of the current canvas element

To reset a <canvas> element, simply declare its width or height,
for example,

a_canvas.width=" ";

or

a_canvas.width=a_canvas.width;

but note that this does not reset the origin-clean flag.

24.1 Contexts
Every canvas can have one associated primary context called using, for example:

var a_context=a_canvas.getContext("<contextId>"[,<options>]);

where contextId may be

• 2d (section 24.2 on the next page)

• webgl, which supports a 3D context (section 24.2.1)

• bitmaprenderer, which runs the steps to set an ImageBitmapRenderingContext’s output bitmap.

a_canvas.probablySupportsContext("<value>"[,<arguments>]);

returns true if the canvas supports the context specified by value.

canvas.transferToImageBitmap() returns a newly created ImageBitmap object with the image in the OffscreenCanvas object. The
image in the OffscreenCanvas object is replaced with a new blank image.

47

offscreenCanvas.height[=v] set or return the height of a "2d" OffscreenCanvas object’s bitmap.

offscreenCanvas.width[=v] set or return the width of a "2d" OffscreenCanvas object’s bitmap.

offscreenCanvasRenderingContext2D.commit() copies the rendering context’s bitmap to the bitmap of the placeholder canvas
element of the associated OffscreenCanvas object.

<context>=offscreenCanvas.getContext(contextId[,options]) returns an object that exposes an API for drawing on the Offscreen-
Canvas object; contextId specifies the desired API: "2d", "bitmaprenderer", "webgl", or "webgl2". Returns null if the can-
vas has already been initialised with another context type.offscreenCanvas=new OffscreenCanvas(width,height) returns a new
OffscreenCanvas object that is not linked to a placeholder canvas element, and whose bitmap’s size is determined by the width
and height arguments.

<offscreenCanvas>=offscreenCanvasRenderingContext2D.canvas returns the associated OffscreenCanvas object.

<promise>=offscreenCanvas.convertToBlob([options]) returns a promise that will fulfill with a new Blob object representing a
file containing the image in the OffscreenCanvas object.

You can give a context a new rendering context with

a_context=new CanvasRenderingContext2D([<width>,<height>]);

Control of a canvas element can be handed over to a proxy, for
example, another HTML element such as an <iframe> element or
a web worker (section 36 on page 83), which is not able to access
a canvas directly, with:

proxy=a_canvas.transferControlToProxy();

while

a_canvas.setContext("<context>");
proxy.setContext("<context>");

binds the canvas or the proxy to that context.
It can also be transferred offscreen with

a_canvas.transferControlToOffscreen();

24.2 2d context

You can save an existing canvas image as an image/png at 96dpi
or the native density of the image (using the second option), unless
the optional <type> argument is image/jpeg,10 to a URL with:

<url>=a_canvas.toDataURL([<type>[,<quality]]);

or to a Javascript object which can be accessed using the
<callback> with:

10If saving to a JPEG, a number between 0.0 and 1.0 may be added as an argument to specify the compression.

48

a_canvas.toBlob(<callback>[,<type>[,<quality]]);

You can find the resolution at which a bitmap will be drawn with

w.screen.canvasResolution;

24.2.1 WebGL context

WebGL is a graphical rendering API on feature parity with
OpenGL 2.0 though each has a few features not supported by
the other.

It provides a 3D rendering pipeline for the <canvas> element
in which you provide the vertex data, the index lists and the tex-
tures; it then updates the frame buffer, with shaders rendered
using the GPU.
Each state represents an object; animation is achieved with a

sequence of states in which there are timed changes in a vertex.

24.2.2 Context, path and styles attributes

The CanvasRenderingContext2D object properties and methods
include context, path and styles properties and methods; these
are given as context properties and methods with a note at the
end indicating where the same construct may be used with path
and/or styles. In each of these expressions ‘context’ should be
replaced by the primary context, for example, ‘a_context’,

General context properties

context.canvas returns the current canvas element

context.fillStyle[=v] returns, or sets, the current fill style, the
value may be a CSS colour (the default fill style is #000 =
black), a CanvasGradient or CanvasPattern object

context.globalAlpha[=v] returns, or sets, the current alpha value

context.globalCompositeOperation[=v] returns, or sets, the
current composition operation; the possible values are:

• clear
• copy A (B is ignored)
• destination B (A is ignored)
• destination-atop B atop A.
• destination-in B in A.
• destination-out B out A.
• destination-over B over A.
• lighter A plus B; show the sum of the RGB values

with a limit of 255
• source-atop A over B; B only shows where it is opaque

and A is transparent
• source-in A in B; A only where B is opaque
• source-out A out B; A only where B is transparent
• source-over A over B; B only shows where A is trans-

parent; the default
• xor A minus B plus B minus A; the non-overlapping

regions are combined
• <vendorName>-<operationName> a vendor specific ex-

tension

context.strokeStyle[=v] returns, or sets, the current stroke style; the value may be a CSS colour (the default stroke style is #000 =
black), a CanvasGradient or CanvasPattern object, which may be

49

gradient.addColorStop(offset,colour); adds a colour stop with the given colour to the gradient at the given offset where the
offset is in the range 0--1; there must be two colour stops for each gradient

gradient=context.createLinearGradient(x0,y0,x1,y1); returns a CanvasGradient object that represents a linear gradient that
paints along the line given by x0,y0 to x1,y1; where x0,x1 or y0,y1 are the same, the gradient will one dimensional

gradient=context.createRadialGradient(x0,y0,r0,x1,y1,r1); returns a CanvasGradient object that represents a radial gradient
that paints along the cone from the circle at origin x0,y0 with radius r0 to the circle at x1,y1 with radius r1 (not supported
in IE>8)pattern=context.createPattern(image,repetition); returns a CanvasPattern object that uses the given image and
repeats in the direction(s) given by the repetition argument, which may be

• repeat moves the image in both directions; the default
• repeat-x moves the image horizontally only
• repeat-y moves the image vertically only
• no-repeat does not move the image

pattern.setTransform(<transform>); sets the transform that will be applied when rendering the pattern

Gradient methods are always associated with a particular canvas context, for example,

var my_gradient=context.createLinearGradient(0, 0, 300, 0);

General context methods

context.resetTransform(); resets the current transform

context.restore(); pops the top state of the drawing state stack
to the canvas

context.rotate(angle); rotates the drawing by the angle in radi-
ans

context.save(); pushes a copy of the drawing state to the top of
the drawing state stack

context.scale(x,y); scales the drawing by the horizontal and ver-
tical factors, x and y respectively

context.setTransform(a,b,c,d,e,f); resets the current trans-
form to the identity matrix, and then invokes the
transform(a,b,c,d,e,f) method with the same argu-
ments

context.setTransform(transform); sets the current transform to
the the matrix represented by the passed DOMMatrix2DInit
dictionary.

context.transferFromImageBitmap(imageBitmap) transfers
the underlying bitmap data from imageBitmap to context,
and the bitmap becomes the contents of the canvas element
to which context is bound.

context.transferFromImageBitmap(null) replaces contents of

50

the canvas element to which context is bound with a trans-
parent black bitmap whose size corresponds to the width
and height content attributes of the canvas element.

context.translate(x,y); moves the drawing by x units horizontally
and y units vertically

context.transform(a,b,c,d,e,f); replaces the current transforma-

tion matrix with the result of multiplying the current trans-
formation matrix with the matrix described by:

a c e
b d f
0 0 1

Note that different browsers handle this transformation differently.

<attributes>=canvas.getContextAttributes() returns an object whose:

• alpha member is true if the context has an alpha channel, or false if it was forced to be opaque.

• desynchronized member is true if the context can be desynchronized.

<context>=canvas.getContext(’2d’[,{[alpha:false]}]) returns a CanvasRenderingContext2D object that is permanently bound to
a particular canvas element. If the alpha setting is provided and set to false, then the canvas is forced to always be opaque.

<context>=canvas.getContext(’bitmaprenderer’[,{[alpha:false]}]) returns a ImageBitmapRenderingContext object that is per-
manently bound to a particular canvas element. If the alpha setting is provided and set to false, then the canvas is forced to
always be opaque.

<matrix>=context.getTransform() returns a copy of the current transform as a newly created DOMMatrix object.

<url>=canvas.toDataURL([type[, quality]]) returns a data: URL for the image in the canvas, where type controls the type of the
image (default "image/png") to be returned and quality applies if type is an image format that supports variable quality and
is a number in the range 0.0 to 1.0 inclusive.

Line context properties

context.lineCap[=v] returns. or sets, the current line cap style;
possible line cap styles are butt, round and square; the
default is butt; also styles

context.lineDashOffset returns. or sets, the current line dash
style phase offset; the default is 0; also styles

context.lineJoin[=v] returns. or sets, the current line join style;

possible line join styles are bevel, round and miter; the
default is miter; also styles

context.miterLimit[=v] returns, or sets, the current miter limit
ratio; the default is 10.0; also styles

context.lineWidth[=v] returns, or sets, the current line width;
the default is 1.0; also styles

styles.lineCap[=v] returns or sets, the current line cap style; pos-

51

sible line cap styles are butt, round and square; the default
is butt; also context

styles.lineDashOffset returns. or sets, the current line dash style
phase offset; the default is 0; also context

styles.lineJoin[=v] returns. or sets, the current line join style;
possible line join styles are bevel, round and miter; the
default is miter; also context

styles.miterLimit[=v] returns, or sets, the current miter limit
ratio; the default is 10.0; also context

styles.lineWidth[=v] returns, or sets, the current line width; the
default is 1.0; also context

Line context methods

context.arcTo(x1,y1,x2,y2,radiusX[,radiusY,rotation]); adds an
arc with the given control points and radius to the current
subpath, connected to the previous point by a straight line;
the optional arguments create an elliptic arc and control its
clockwise rotation; also path

context.arc(x,y,radius,startAngle,endAngle[,anticlockwise]);
adds points to the subpath such that the arc described
by the circumference of the circle described by the argu-
ments, starting at the given start angle and ending at the
given end angle, going in the given direction (defaulting to

clockwise), is added to the path, connected to the previous
point by a straight line; also path

context.beginPath(); resets the current path

context.bezierCurveTo(cp1x,cp1y,cp2x,cp2y,x,y); adds the
given point to the current subpath, connected to the pre-
vious one by a cubic Bézier curve with the given control
points; also path

context.clearRect(x,y,w,h); clears all pixels on the canvas in the
rectangle where the origin of x,y is the top left corner of the
canvas to transparent black

context.clip([fillRule]); further constrains the clipping region to
the the default path using the specified fill style

context.clip(p[,fillRule]); further constrains the clipping region
to the specified path using the specified fill style

context.closePath(); marks the current subpath as closed, and
starts a new subpath with a point the same as the start and
end of the newly closed subpath; also path

context.drawFocusIfNeeded([p,]element) if the given element is
focused, draws a focus ring around the current default path
or the given path, following the platform conventions for
focus rings.

context.ellipse(x,y,radiusX,radiusY,rotation,startAngle,endAngle[,anticlockwise]); adds points to the subpath such that the arc
described by the circumference of the ellipse described by the arguments, starting at the given start angle and ending at the
given end angle, going in the given direction (defaulting to clockwise), is added to the path, connected to the previous point by
a straight line.; also path

52

context.fill([p]); fills the subpaths of the default or the specified
path with the current fill style

context.fill(p,[fillRule]); fills the subpaths of the specified path
with the given fill style

context.fillRect(x,y,w,h); paints the rectangle where the origin
of x,y is the top left corner of the canvas onto the canvas,
using the current fill style

context.isPointInPath([p,]x,y[,fillRule]); returns true if the
given point is in the default or specified path with the spe-
cified fill style

context.isPointInStroke([p,]x,y); returns true if the given point
in the stroke region would be in the default or the specified
path

context.lineTo(x,y); adds the given point to the current subpath,
connected to the previous one by a straight (invisible) line;
to get a line 1 pixel wide, always specify x as n.5; also path

context.moveTo(x,y); creates a new subpath with the given
point; to start a line 1 pixel wide, always specify x as n.5;
also path

context.quadraticCurveTo(cpx,cpy,x,y); adds the given point to
the current subpath, connected to the previous one by a
quadratic Bézier curve with the given control point; also
path

context.rect(x,y,w,h); adds a new closed subpath to the path,
representing the given rectangle; also path

context.scrollPathIntoView([p]); scroll the default or the given
path into view

context.setLineDash(<segments>); sets the current line dash
style; also styles; to get the current line dash style use; the
<segments> argument is a list of the distances to use to turn
the line off and on

context.stroke([p]); strokes (makes visible) the subpaths of the
default or the specified path with the current stroke style

context.strokeRect(x,y,w,h); paints the box that outlines the
rectangle where the origin of x,y is the top left corner of
the canvas onto the canvas, using the current stroke style

path.arcTo(x1,y1,x2,y2,radiusX[,radiusY,rotation]); adds an
arc with the given control points and radius to the current
subpath, connected to the previous point by a straight line;
the optional arguments create an elliptic arc and control its
clockwise rotation; also context

path.arc(x,y,radius,startAngle,endAngle[,anticlockwise]); adds
points to the subpath such that the arc described by the
circumference of the circle described by the arguments,
starting at the given start angle and ending at the given end
angle, going in the given direction (defaulting to clockwise),
is added to the path, connected to the previous point by a
straight line; also context

path.bezierCurveTo(cp1x,cp1y,cp2x,cp2y,x,y); adds the given
point to the current subpath, connected to the previous one
by a cubic Bézier curve with the given control points; also
context

path.closePath(); marks the current subpath as closed, and
starts a new subpath with a point the same as the start
and end of the newly closed subpath; also context

path.ellipse(x,y,radiusX,radiusY,rotation,startAngle,endAngle[,anticlockwise]); adds points to the subpath such that the arc de-

53

scribed by the circumference of the ellipse described by the arguments, starting at the given start angle and ending at the given
end angle, going in the given direction (defaulting to clockwise), is added to the path, connected to the previous point by a
straight line.; also context

path.lineTo(x,y); adds the given point to the current subpath,
connected to the previous one by a straight (invisible) line;
to get a line 1 pixel wide, always specify x as n.5; also
context

path.moveTo(x,y); creates a new subpath with the given point;
to start a line 1 pixel wide, always specify x as n.5; also
context

path.quadraticCurveTo(cpx,cpy,x,y); adds the given point to the
current subpath, connected to the previous one by a quad-
ratic Bézier curve with the given control point; also context

path.rect(x,y,w,h); adds a new closed subpath to the path, rep-
resenting the given rectangle; also context

<segments>=context.getLineDash(); returns a copy of the
current line dash pattern; also styles;

<segments>=styles.getLineDash(); returns a copy of the cur-
rent line dash pattern; also context;

Text context properties

context.direction[=v] returns, or sets, the current directionality;
also styles; values may be ltr, rtl or inherit, the default

context.filter[=v] returns, or sets, the current filter

context.font[=v] returns, or sets, the current font settings; also
styles; the value may be anything you can put in a CSS
font rule including:

• bold
• nnpx
• sans-serif
• serif

context.textAlign[=v] returns, or sets, the current text align-
ment settings; also styles; values may be:

• start (the default) depends on directionality
• end depends on directionality
• left
• right
• center

N.B. these are not quite the same as those in the CSS
text-align rule.

context.textBaseline[=v] returns, or sets, the current baseline
alignment settings (figure 1); also styles; values may be:

• top the top of the em square
• hanging the hanging baseline
• middle the middle of the em square
• alphabetic the alphabetic baseline; the default
• ideographic the ideographic baseline
• bottom the bottom of the em square

N.B. top and bottom may create unexpected effects in some
languages.

54

alphabetic baseline
ideographic baseline

top of bounding box

top of em square

hanging baseline

middle

bottom of em square

bottom of bounding box

Figure 1: Text baselines

55

styles.direction[=v] returns, or sets, the current directionality;
also styles; values may be ltr, rtl or inherit, the de-
fault

styles.font[=v] returns, or sets, the current font settings; also
styles; the value may be anything you can put in a CSS
font rule including:

• bold
• nnpx
• sans-serif
• serif

styles.textAlign[=v] returns, or sets, the current text alignment
settings; also styles; values may be:

• start (the default) depends on directionality
• end depends on directionality
• left
• right
• center

N.B. these are not quite the same as those in the CSS
text-align rule.

styles.textBaseline[=v] returns, or sets, the current baseline
alignment settings (figure 1); also styles; values may be:

• top the top of the em square
• hanging the hanging baseline
• middle the middle of the em square
• alphabetic the alphabetic baseline; the default
• ideographic the ideographic baseline

• bottom the bottom of the em square

N.B. top and bottom may create unexpected effects in some
languages.

Text context methods

context.fillText(text,x,y[,maxWidth]); fill the given text at the
given position; if a maximum width is provided, the text will
be scaled to fit that width if necessary

context.strokeText(text,x,y[,maxWidth]); stroke the given text
at the given position; if a maximum width is provided, the
text will be scaled to fit that width if necessary; the following
return

metrics=context.measureText(text); returns a
TextMetrics object with the metrics of the given text
in the current font; the TextMetrics object properties
can be returned with:

metrics.actualBoundingBoxAscent the distance from
the horizontal line indicated by the textBaseline
attribute to the top of the bounding rectangle
of the given text, in CSS pixels; positive num-
bers indicate a distance going up from the given
baseline; this number can vary greatly based on
the input text, even if the first font specified cov-
ers all the characters in the input; for example, the
actualBoundingBoxAscent of a lowercase ‘o’ from
an alphabetic baseline would be less than that of
an uppercase ‘F’; the value can easily be negative;
for example, the distance from the top of the em
box (textBaseline value "top") to the top of the
bounding rectangle when the given text is just a

56

single comma "," would likely (unless the font is
quite unusual) be negative

metrics.actualBoundingBoxDescent the distance
from the horizontal line indicated by the
textBaseline attribute to the bottom of the
bounding rectangle of the given text, in CSS pixels;
positive numbers indicate a distance going down
from the given baseline

The actualBoundingBoxAscent and actual
BoundingBoxDescent attributes are useful when
drawing a bounding box around specific text.

metrics.actualBoundingBoxLeft the distance parallel
to the baseline from the alignment point given by
the textAlign attribute to the left side of the
bounding rectangle of the given text, in CSS pixels;
positive numbers indicate a distance going left from
the given alignment point; the sum of this value
and actualBoundingBoxRight can be wider than
the width of the inline box (width), in particular
with slanted fonts where characters overhang their
advance width

metrics.actualBoundingBoxRight the distance paral-
lel to the baseline from the alignment point given
by the textAlign attribute to the right side of the
bounding rectangle of the given text, in CSS pixels;
positive numbers indicate a distance going right
from the given alignment point

metrics.fontBoundingBoxAscent the distance from
the horizontal line indicated by the textBaseline
attribute to the top of the highest bounding rect-
angle of all the fonts used to render the text, in
CSS pixels; positive numbers indicate a distance

going up from the given baseline; this value and
the next are useful when rendering a background
that must have a consistent height even if the exact
text being rendered changes

metrics.fontBoundingBoxDescent the distance from
the horizontal line indicated by the textBaseline
attribute to the bottom of the lowest bounding
rectangle of all the fonts used to render the text, in
CSS pixels; positive numbers indicating a distance
going down from the given baseline.

metrics.alphabeticBaseline the distance from the ho-
rizontal line indicated by the textBaseline at-
tribute to the alphabetic baseline of the line
box, in CSS pixels; positive numbers indicate
that the given baseline is below the alphabetic
baseline (zero if the given baseline is the alphabetic
baseline)

metrics.hangingBaseline the distance from the hori-
zontal line indicated by the textBaseline attrib-
ute to the hanging baseline of the line box, in CSS
pixels; positive numbers indicate that the given
baseline is below the hanging baseline (zero if the
given baseline is the hanging baseline)

metrics.ideographicBaseline the distance from the ho-
rizontal line indicated by the textBaseline at-
tribute to the ideographic baseline of the line
box, in CSS pixels; positive numbers indicate
that the given baseline is below the ideographic
baseline (zero if the given baseline is the ideo-
graphic baseline)

metrics.emHeightAscent the distance from the hori-
zontal line indicated by the textBaseline attrib-

57

ute to the top of the em square in the line box,
in CSS pixels; positive numbers indicate that the
given baseline is below the top of the em square
(so this value will usually be positive); Zero if the
given baseline is the top of the em square; half the
font size if the given baseline is the middle of the
em square

metrics.emHeightDescent the distance from the hori-
zontal line indicated by the textBaseline attrib-
ute to the bottom of the em square in the line box,
in CSS pixels; positive numbers indicate that the
given baseline is below the bottom of the em square
(so this value will usually be negative or Zero if the
given baseline is the top of the em square)

metrics.width the width of that inline box, in CSS
pixels.

Path object methods

p.addPath(p[,transform]); adds path p to the Path2D object

<p>=new Path2D(); creates an empty Path2D object,

<p>=new Path2D(path); when path is a Path2D object, re-
turns a copy of path. When path is a string, creates the
path described by the argument, interpreted as SVG path
data.

Image properties

context.imageSmoothingEnabled[=v] sets or resets whether
smoothing will take place during any rescaling; values may
be true or false

context.imageSmoothingQuality[=v] sets or resets the current
image smoothing quality; values are low, medium or high

context.shadowBlur[=v] returns, or sets, the current level of blur
applied to shadows

context.shadowColor[=v] returns, or sets, the current shadow
colour in CSS values

context.shadowOffsetX[=v]

context.shadowOffsetY[=v] returns, or sets, the current shadow
offset

Image methods

context.drawImage(image,dx,dy); draws an image with its top
left hand corner at dx,dy

context.drawImage(image,dx,dy,dw,dh); draws an image with
its top left hand corner at dx,dy and width dw and height
dh (only uniform scaling supported in earlier ver-
sions of IE)

context.drawImage(image,sx,sy,sw,sh,dx,dy,dw,dh); clips an
image to make sx,sy the top left hand corner, sw its width
and sh its height and draws it with its top left hand corner
at dx,dy and width dw and height dh (not supported in
earlier versions of IE)

24.2.3 Pixel manipulation

Pixel manipulation may be undertaken using ImageData objects.

58

ImageData object constructors
<imagedata>=new ImageData(sw,sh);

<imagedata>=context.createImageData(sw,sh); creates an
ImageData object using the screen pixels

<imagedata>=context.createImageData(<imagedata>);
creates a new ImageData object with the dimensions of
an existing ImageData object

<imagedata>=new ImageData(data,sw[,sh]); creates a

new ImageData object using data provided by a
Uint8ClampedArray argument.

ImageData properties
imagedata.data returns returns an array in RGBA order of the

data in an ImageData object

imagedata.width returns the width of an ImageData object

imagedata.height returns the height of an ImageData object

ImageData methods
context.putImageData(imagedata,dx,dy[,dirtyX,dirtyY,dirtyWidth,dirtyHeight]); paints data from an ImageData object on the

canvas

<imagedata>=context.getImageData(sx,sy,sw,sh); returns an ImageData object containing the image data for the given rectangle

25 Media element objects

As well as the HTMLElement object, some elements can have
alternatives to the HTMLElement object:

• HTMLEmbedelement for <embed> elements

• HTMLObjectElement for <object> elements

• HTMLParamElement for <param> elements

• HTMLMediaElement or HTMLVideoElement for <video> ele-
ments

• HTMLMediaElement or HTMLAudioElement for <audio> ele-
ments

• HTMLSourceElement for <source> elements

• HTMLTrackElement for <track> elements

25.1 Media element properties

event.track returns the track object (TextTrack, AudioTrack, or
VideoTrack) to which the event relates.

m.audioTracks returns an AudioTrackList object representing
the audio tracks available in the media resource

m.audioTracks[n] returns the specified AudioTrack object

m.audioTracks.length returns the number of tracks in the list

m.buffered returns a TimeRanges object that represents the

59

ranges of the media resource that the user agent has buf-
fered

m.canPlayType(type) returns an empty string (a negative re-
sponse), maybe or probably based on how confident the user
agent is that it can play media resources of the given type

m.currentSrc returns the address of the current media resource
or an empty string when there is no media resource.

m.currentTime[=n] returns the playback position in seconds or
seeks the time given by value

m.defaultPlaybackRate[=n] returns or sets the default playback
rate, when the user is not fast-forwarding or reversing; a
new rate has only affects playback if the user switches
to a fast-forward mode and then returns to normal play-
back; if the element has a current MediaController, the
defaultPlaybackRate attribute is ignored and the current
MediaController’s defaultPlaybackRate is used instead

m.duration returns the length of the media resource in seconds,
NaN if the duration isn’t available or Infinity for unboun-
ded streams11

m.ended returns true if playback has reached the end of the me-
dia resource

m.error returns a MediaError object representing the current er-
ror state of the element or null if there is no error

m.error.code returns the current error’s error code attribute of a
MediaError object:

MEDIA_ERR_ABORTED(1) the fetching process for the
media resource was aborted by the user agent at the
user’s request

MEDIA_ERR_NETWORK(2) a network error of some de-
scription caused the user agent to stop fetching the me-
dia resource, after the resource was established to be
usable

MEDIA_ERR_DECODE(3) an error of some description
occurred while decoding the media resource, after the
resource was established to be usable

MEDIA_ERR_SRC_NOT_SUPPORTED(4) The media
resource indicated by the src=" " attribute was not
suitable

m.error.message returns the current error’s message attribute of
a MediaError object

m.length returns the number of ranges in the object

m.muted[=v] returns true if audio is muted, overriding the
volume attribute, and false otherwise; can be set

m.networkState returns the current state of network activity for
the element represented by the networkState attribute:

NETWORK_EMPTY(0) the element has not yet been ini-
tialized

NETWORK_IDLE(1) the element’s resource selection al-
gorithm is active and has selected a resource, but it is
not actually using the network at this time

NETWORK_LOADING(2) the user agent is actively try-
ing to download data

NETWORK_NO_SOURCE(3) the element’s resource se-
lection algorithm is active, but it has not yet found a
resource to use

11NaN and Infinity cannot be represented in a floating point number and therefore cannot be used in HTML.

60

m.paused returns true if playback is paused; false otherwise

m.playbackRate[=n] returns or sets the current rate playback,
where 1.0 is normal speed; when the element has a current
MediaController, the playbackRate attribute is ignored
and the current MediaController’s playbackRate is used
instead.

m.played returns a TimeRanges object that represents the ranges
of the media resource that the user agent has played

m.readyState returns the current state of the element with
respect to rendering the current playback position, the
greatest value describing the state of the element:

HAVE_NOTHING(0) no information available; media ele-
ments whose networkState attribute are set to
NETWORK_EMPTY are always in the HAVE_NOTHING state

HAVE_METADATA(1) Enough of the resource has been
obtained that the duration of the resource is available;
the dimensions of a <video> element are also available
but there is no data for the current playback position

HAVE_CURRENT_DATA(2) data for the current play-
back position is available, but not enough successfully
to advance or there is no more data to obtain in the
direction of playback; note that the difference between
this and previous state normally only matters when us-
ing the <canvas> element

HAVE_FUTURE_DATA(3) data for the current playback
position is available, as well as enough to advance and
the text tracks are ready: note that:

• once playback has ended, the current playback po-
sition can never advance and

• the difference between this and the previous state
only really matters if advancing frame by frame

HAVE_ENOUGH_DATA(4) the conditions for the
HAVE_FUTURE_DATA state are met, as well as either:

• data is being fetched at a rate where the current
playback position would not overtake the available
data before playback reaches the end of the media
resource, or

• waiting longer will not result in further data being
obtained, for example, if the buffer is full

m.seekable returns a TimeRanges object that represents the
ranges of the media resource to which it is possible for the
user agent to seek

m.seeking returns true if the user agent is currently seeking

media.srcObject[=source] allows the media element to be as-
signed a media provider object

m.textTracks[n] returns the TextTrack object representing the
nth text track in the media element’s list of text tracks

m.textTracks.length returns the number of all the text tracks as-
sociated with the media element

m.videoTracks returns a VideoTrackList object representing
the video tracks available in the media resource

m.videoTracks[n] returns the specified VideoTrack object

m.videoTracks.length returns the number of tracks in the list

m.videoTracks.selectedIndex returns the index of the currently
selected track, if any, or −1 otherwise

61

m.volume[=n] returns or sets the current playback volume, as a
number in the range 0.0 to 1.0, where 0.0 is the quietest and
1.0 the loudest.

video.videoWidth

video.videoHeight returns the intrinsic dimensions of the
<video> element, or zero if the dimensions are not known

videoTrack.id returns the ID of the given track.

25.2 Media element methods

m.fastSeek(<time>); seeks to near the given time as fast as pos-
sible, trading precision for speed; to seek to a precise time,
use the currentTime attribute instead; does nothing if the
media resource has not been loaded

m.load(); causes the element to reset and start selecting and load-
ing a new media resource from scratch

m.pause(); sets the paused attribute to true, loading the media
resource if necessary

m.play(); sets the paused attribute to false, loading the media
resource and beginning playback if necessary; if playback
had ended, will restart it from the beginning

<audio>=new Audio([url]); returns a new <audio> element,
with the src=" " attribute set to the value passed by url, if
applicable

<time>=m.end(n) returns the time for the end of the range
with the given index

<time>=m.start(n) returns the time for the start of the range
with the given index

25.3 audioTrack objects
AudioTrack objects include AudioTrack and AudioTrackList.

25.3.1 audioTrack object properties

audioTrack.enabled[=v] returns true if the given track is act-
ive, and false otherwise; can be set, to change whether the
track is enabled or not; if multiple audio tracks are enabled
simultaneously, they are mixed

audioTrack.id returns the ID of the given track; can be used
with a fragment identifier if the format supports the Me-
dia Fragments URI syntax, and that can be used with the
getTrackById() method

audioTrack.kind returns the category the given track falls into
(see Table 1)

audioTrack.label returns the label of the given track, if known,
or the empty string otherwise.

audioTrack.language returns the language of the given track, if
known, or the empty string

25.3.2 audioTrack object methods

<audioTrack>=m.audioTracks[n] returns the AudioTrack ob-
ject

<audioTrack>=m.audioTracks.getTrackById(id) returns the
AudioTrack object with the given identifier, or null if no
track has that identifier.

25.4 textTrack objects
TextTrack objects include TextTrack, TextTrackList,
TextTrackCue and TextTrackCueList.

62

Table 1: Track categories

alternative alternative to the main track, e.g. a different take of
a song (audio), or a different angle (video)

Audio and video Ogg:
"audio/alternate" or
"video/alternate"

captions version of the main video track with captions burnt
in (for legacy content)

Video only

description audio description of a video track Audio only Ogg:
"audio/audiodesc"

main primary audio or video track Audio and video Ogg: "audio/main" or
"video/main"; WebM:
the "FlagDefault"
element is set

main-desc primary audio track, mixed with audio descriptions Audio only AC3 audio in
MPEG-2

sign sign-language interpretation of an audio track Video only Ogg: "video/sign"
subtitles main video track with subtitles burnt in (for legacy

content)
Video only

translation translated version of the main audio track Audio only Ogg: "audio/dub"
commentary commentary on the primary audio or video track Audio and video
(empty string) no explicit kind Audio and video Any other track type,

track role, or
combination of track
roles not described
above

63

25.4.1 textTrack object properties

cue.endTime[=n] returns or sets the TextTrack cue end time in
seconds

cue.id[=v] returns or sets the TextTrack cue identifier

cue.pauseOnExit[=v] returns true if the TextTrack cue pause-
on-exit flag is set, false otherwise or sets

cue.startTime[=n] returns or sets the TextTrack cue start time
in seconds

cue.track returns the TextTrack object to which this text track
cue belongs, if any, or null otherwise.

cuelist[n] returns the text track cue with index n in the
TextTrackCueList; the cues are sorted in text track cue
order.

cuelist.length returns the number of cues in the
TextTrackCueList

textTrack.activeCues returns the TextTrack cues that are cur-
rently active (i.e. that start before the current playback po-
sition and end after it) as a TextTrackCueList object.

textTrack.cues returns the TextTrack cues, as a
TextTrackCueList object

textTrack.id returns the ID of the given track which can be used
with a fragment identifier if the format supports the Me-
dia Fragments URI syntax, and with the getTrackById()
method; for TextTrack objects corresponding to <track>
elements, this is the ID of the <track> element.

textTrack.inBandMetadataTrackDispatchType returns the text
track in-band metadata track dispatch type string

textTrack.kind returns the text track kind string.

textTrack.label returns the text track label, if there is one, or the
empty string otherwise (cue to create one!)

textTrack.language returns the text track language string

textTrack.mode[=v] returns or sets the text track mode, repres-
ented by one of the following:

disabled The text track disabled mode.
hidden The text track hidden mode.
showing The text track showing mode

track.readyState returns the text track readiness state, represen-
ted by a number from the following list:

track.NONE(0) The text track not loaded state.
track.LOADING(1) The text track loading state.
track.LOADED(2) The text track loaded state.
track.ERROR(3) The text track failed to load state.

track.track returns the TextTrack object corresponding to the
text track of the <track> element

25.4.2 textTrack object methods

cuelist.getCueById(id); returns the first TextTrack cue (in
TextTrack cue order) with text track cue identifier id or
null if none of the cues have the given identifier or if the
argument is the empty string

textTrack.addCue(cue); adds the given cue to TextTrack ob-
ject’s list of cues

textTrack.removeCue(cue); removes the given cue from
TextTrack object’s cues

64

<textTrack>=m.addTextTrack(kind[,label[,language]])
creates and returns a new TextTrack object, which is also
added to the media element’s list of text tracks.

<textTrack>=m.textTracks.getTrackById(id) returns the
TextTrack object with the given identifier, or null if no
track has that identifier.

25.5 videoTrack objects

VideoTrack objects include VideoTrack and VideoTrackList.

25.5.1 videoTrack object properties

videoTrack.id returns the ID of the given track; can be used
with a fragment identifier if the format supports the Me-
dia Fragments URI syntax, and that can be used with the
getTrackById() method

videoTrack.kind returns the category the given track falls into
(see Table 1)

videoTrack.label returns the label of the given track, if known,
or the empty string otherwise

videoTrack.language returns the language of the given track, if
known, or the empty string

videoTrack.selected[=v] returns true if the given track is act-
ive, and false otherwise; can be set, to change whether the
track is selected or not; either zero or one video track is se-
lected; selecting a new track while a previous one is selected
will unselect the previous one

25.5.2 videoTrack object methods

<videoTrack>=m.videoTracks[n] returns the videoTrack ob-
ject

<videoTrack>=m.videoTracks.getTrackById(id) returns the
VideoTrack object with the given identifier, or null if no
track has that identifier.

25.6 MimeType and Plugin objects
MimeType and Plugin objects include MimeType and Plugin,
MimeTypeArray and PluginArray.

25.6.1 MimeType and Plugin object properties

mimeType.description returns the MIME type’s description

mimeType.enabledPlugin returns the Plugin object that imple-
ments this MIME type.

mimeType.suffixes returns the MIME type’s typical file exten-
sions, in a comma-separated list

mimeType.type returns the MIME type

plugin[n] returns the specified MimeType object

plugin[name] returns the MimeType object for the given MIME
type

plugin.description returns the plugin’s description

plugin.filename returns the plugin library’s filename, if applicable
on the current platform

plugin.length returns the number of MIME types, represented by
MimeType objects, supported by the plugin

plugin.name returns the plugin’s name

65

25.6.2 MimeType and Plugin object methods

<mimeType>=plugin.item(n); returns the specified MimeType
object

<mimeType>=plugin.item(name); returns the MimeType ob-
ject for the given MIME type

<mimeType>=w.navigator.mimeTypes.item(n); returns the
nth MimeType object

<mimeType>=w.navigator.mimeTypes.item(name); returns
the MimeType object for the given MIME type

<plugin>=w.navigator.plugins.item(n); returns the nth
Plugin object

<plugin>=w.navigator.plugins.item(name); returns the
Plugin object for the plugin with the given name

26 Table element objects

As well as the HTMLElement object some elements can have al-
ternatives to the HTMLElement object:

• HTMLTableElement for <table> elements

• HTMLTableCaptionElement for <caption> elements

• HTMLTableColElement for <colgroup> and <col> elements

• HTMLTableSectionElement for <tbody>, <thead> and
<tfoot> elements

• HTMLTableRowElement for <tr> elements

• HTMLTableDataCellElement or HTMLTableCellElement for
<td> elements

• HTMLTableHeaderCellElement or HTMLTableCellElement
for <th> elements

26.1 Table element properties
<cell>.cellIndex returns the position of the cell in the row’s cells

list or −1 if the element isn’t in a row; this does not neces-

sarily correspond to the x-position of the cell in the table,
since earlier cells might cover multiple rows or columns

table.caption[=v] returns or sets the table’s <caption> element

table.rows returns an HTMLCollection array object of the <tr>
elements of the table

table.tBodies returns an HTMLCollection array object of the
<tbody> elements of the table

table.tFoot[=v] returns or sets the table’s <tfoot> element

table.tHead[=v] returns or sets the table’s <thead> element

tbody.rows returns an HTMLCollection array object of the <tr>
elements of the table section

tr.cells returns an HTMLCollection array object of the <td> and
<th> elements of the row.

tr.rowIndex returns the position of the row in the table’s rows list
or −1 if the element isn’t in a table

66

tr.sectionRowIndex returns the position of the row in the table
section’s rows list or −1 if the element isn’t in a table section

26.2 Table element methods
table.deleteCaption(); ensures the table does not have a

<caption> element

table.deleteRow(n); removes the <tr> element with the given
position in the table; the index −1 is equivalent to deleting
the last row of the table

table.deleteTFoot(); Ensures the table does not have a <tfoot>
element

table.deleteTHead(); ensures the table does not have a <thead>
element

tbody.deleteRow(n); removes the <tr> element with the given
position in the table section; the index −1 is equivalent to
deleting the last row of the table section

tr.deleteCell(n); removes the <td> or <th> element with the
given position in the row; the index −1 is equivalent to de-
leting the last cell of the row

tr.insertCell([n]); creates a <td> element, inserts it into the table
row at the position given by the argument, and returns the
<td>; the index −1, which is the default if the argument is
omitted, is equivalent to inserting at the end of the table
row

<cell>=tr.insertCell([n]); creates a <td> element, inserts it into
the table row at the position given by the argument, and re-
turns the <td>; the index −1, which is the default if the
argument is omitted, is equivalent to inserting at the end of
the row

<caption>=table.createCaption() ensures the table has a cap-
tion element, and returns it.

<tbody>=table.createTBody(); ensures the table has a
<tbody> element, and returns it

<tfoot>=table.createTFoot(); ensures the table has a <tfoot>
element, and returns it

<thead>=table.createTHead(); ensures the table has a
<thead> element, and returns it

<tr>=table.insertRow[n] creates a <tr> element, along with a
<tbody> element if required, inserts them into the table at
the position given by n, and returns the <tr>; index −1,
which is the default if the argument is omitted, is equivalent
to inserting at the end of the table

<tr>=tbody.insertRow([n]); creates a <tr> element, inserts it
into the table section at the position given by the argument,
and returns the <tr>; the index −1, which is the default
if the argument is omitted, is equivalent to inserting at the
end of the table section

67

27 Form element objects

Apart from HTMLElement, there are specific media element ob-
jects, such as:

• HTMLFormElement for <form> elements

• HTMLFieldsetElement for <fieldset> elements

• HTMLLegendElement for <legend> elements

• HTMLLabelElement for <label> elements

• HTMLInputElement for <input> elements

• HTMLButtonElement for <button> elements

• HTMLSelectElement for <select> elements

• HTMLDataListElement for <datalist> elements

• HTMLOptGroupElement for <optgroup> elements

• HTMLOptionElement for <option> elements

• HTMLTextAreaElement for <textarea> elements

Where a <form> element has an id=" " attribute referenced by
the form=" " attribute of an <input> element, its value becomes
the name of the element object.

27.1 Form element object properties

<control>.labels Returns a NodeList object of all the <label>
elements that the form control is associated with.

datalist.options returns an HTMLCollection array object of the
<option> elements in the <datalist> element

e.form returns the element’s form owner or null if there isn’t one

e.formData returns a FormData object representing names and
values of elements associated to the target form.

e.submitter returns the element representing the submit button
that triggered the form submission, or null if the submission
was not triggered by a button.

fieldset.elements returns an HTMLFormControlsCollection ar-
ray object of the form controls in the element

fieldset.type returns the string "fieldset".

form[n] returns the nth element in the form (excluding image
buttons for historical reasons)

form.length returns the number of form controls in the form (ex-
cluding image buttons for historical reasons).

form[name] returns the form control (or, if there are several, a
RadioNodeList of the form controls) in the form with the
given ID or name (excluding image buttons for historical
reasons); or, if there are none, returns the element
with the given ID; once an element has been referenced us-
ing a particular name, that name will continue being avail-
able as a way to reference that element in this method, even
if the element’s actual ID or name changes, for as long as
the element remains in the document; if there are multiple
matching items, then a RadioNodeList object containing all
those elements is returned

form.elements returns an HTMLCollection array object of the
form controls in the form (excluding image buttons for his-
torical reasons)

68

input.checked[=v] returns or sets the current checkedness of the
form control

input.files[=files] returns, or sets in the case of a drag and drop
operation, a FileList object listing the selected files of the
form control or null if the control isn’t a file control.

input.indeterminate[=v] when set, overrides the rendering of
checkbox controls so that the current value is not visible

input.list returns the <datalist> element indicated by the list
attribute

input.value[=v] returns or sets the current value of the form con-
trol

input.valueAsDate[=v] returns or sets a Date object represent-
ing the form control’s value, if applicable; otherwise, returns
null

input.valueAsNumber[=v] returns or sets a number represent-
ing the form control’s value, if applicable; otherwise, returns
NaN12 which sets the underlying value to the empty string

internals.form returns the form owner of internal’s target ele-
ment.

internals.labels returns a NodeList of all the label elements that
internals’s target element is associated with.

internals.validity returns the ValidityState object for internals’s
target element.

internals.willValidate returns true if internals’s target element
will be validated when the form is submitted; false other-
wise.

internals.validationMessage returns the error message that
would be shown to the user if internals’s target element was
to be checked for validity.

label.control returns the form control that is associated with this
element

legend.form returns the element’s <form> element, if any, or null
otherwise.

option.form returns the element’s <form> element, if any, or null
otherwise.

option.index returns the index of the element in its <select>
element’s options list

option.selected returns true if the element is selected, and false
otherwise; can be set, to override the current state of the ele-
ment

option.text same as textContent, except that spaces are col-
lapsed and script elements are skipped (see section 23.1 on
page 46)

output.defaultValue[=v] returns or sets the element’s current de-
fault value

output.type returns the string output

output.value[=v] returns or sets the element’s current value

progress.position returns the result of dividing the current value
by the maximum value unless it is an indeterminate progress
bar for which it returns −1

select[n] returns the item with index n from the list of options;
the items are sorted in tree order

12(NaN cannot be represented in a floating point number)

69

select.length[=n] returns or sets the number of elements in
the list of options, if necessary, truncating the number of
<option> elements in the <select> element or adding new
blank <option> elements to the <select> element

select.options returns an HTMLOptionsCollection of the list of
options

select.selectedIndex[=n] returns or sets the index of the first se-
lected item, if any, or −1 if there is no selected item

select.selectedOptions returns an HTMLCollection array object
of the options selected

select.type returns select-multiple if the element has a
multiple attribute, and select-one otherwise.

select.value[=v] returns or sets the value of the first selected
item, if any, or the empty string if there is no selected item

textarea.type returns the string textarea

textarea.value returns or sets the current value of the element

27.2 Form element object methods

form.reset(); resets the form

form.submit(); submits the form

form.checkValidity(); returns true if the form’s controls are all
valid; otherwise, returns false

form.reportValidity(); returns true if the form’s controls are all
valid and informs the user; otherwise, returns false and
informs the user

form.requestSubmit([submitter]) requests to submit the form.
Unlike submit(), this method includes interactive con-
straint validation and firing a submit event, either of which
can cancel submission.

input.stepUp([n]);

input.stepDown([n]); Changes the form control’s value by the
value given in the step attribute, multiplied by n unless the
step attribute’s value is any; the default is 1

internals.setFormValue(v[,state]) sets both the state and sub-
mission value of internals’s target element to value[and its
state to state].

internals.setValidity({}) marks internals’s target element as sat-
isfying its constraints.

internals.setValidity(flags, message[, anchor]) marks intern-
als’s target element as suffering from the constraints indic-
ated by the flags argument, and sets the element’s validation
message to message. If anchor is specified, the user agent
might use it to indicate problems with the constraints of
internals‘s target element when the form owner is validated
interactively or reportValidity() is called.

select.add(element[,before]); adds an element to the end of the
list, or before the node specified by before

<option>=new Option([text[,value[,defaultSelected[,selected]]]]); returns an <option> element, optionally with text as its con-
tent, and the value and selected attributes set; however, the <option> element will only be selected if selected is true

70

<valid>=internals.checkValidity() returns true if internals‘s
target element has no validity problems; false otherwise.
Fires an invalid event at the element in the latter case.

valid=internals.reportValidity() returns true if internals’s target
element has no validity problems; otherwise, returns false,
fires an invalid event at the element, and (if the event isn’t
cancelled) reports the problem to the user.

28 The history object

28.1 History properties
e.newURL returns the URL of the session history entry that is

now current

e.oldURL returns the URL of the session history entry that was
previously current

e.persisted returns false if the page is newly being loaded (and
the load event will fire); otherwise, returns true

e.state returns a copy of the information that was provided to
pushState() or replaceState()

w.history returns the joint session history

w.history.length returns the number of entries in the joint session
history

w.history.scrollRestoration[=v] sets of returns the scroll restora-
tion mode of the current entry in the session history.

w.history.state returns the current State object

28.2 History methods

w.history.back(); steps back a page (= back button) in the joint
session history, or a frame if the user is in a child frame of
the page, or does nothing if there is no previous page

w.history.forward(); steps forward a page (=forward button) in
the joint session history, or a frame if the user is in a child
frame of the page, or does nothing if there is no next page

w.history.go([n]); steps forwards, or backwards if n is negative,
through the pages, or frames, in the joint session history; 0
will reload the current page

w.history.pushState(data,title[,url]); pushes the given data onto
the session history, with the given title, and, if provided and
not null, the given URL.

w.history.replaceState(data,title[,url]); updates the current
entry in the session history to have the given data, title,
and, if provided and not null, URL

71

29 The location object

29.1 Location object properties

d.location[=v] or

w.location[=v] returns or sets the Location object of the Window
which has the properties:

• href the URL of the window, which is decomposed into

– protocol for example, https

– host

– hostname

– port

– pathname

hence:

w.location.href[=v] returns, or sets, the current
page’s location

• search enables navigation within a window

• hash holds the application’s state; setting this property
allows the contents of the page to be changed without
changing the page

See note on location.toString().

Changing the value of location with:

location = "<URL>";

or

location = "#top";

enables document navigation.13

Note: Javascript scripts are not allowed to access most of the
properties of Window objects, in particular the Document ob-
ject, with a different location.protocol, location.host
or location.port property (aka same origin policy); so
changing the values in the location properties may prevent
a script from running.

location.ancestorOrigins returns a DOMStringList object listing
the origins of the ancestor browsing contexts, from the par-
ent browsing context to the top-level browsing context.

location.hash returns the Location object’s URL’s fragment.

location.host returns the Location object’s URL’s host and port
(if different from the default port for the scheme).

location.hostname returns the Location object’s URL’s host.

location.href returns the Location object’s URL. Can be set, to
navigate to the given URL.

location.origin returns the Location object’s URL’s origin. NB.
prefer origin=self.origin

location.pathname returns the Location object’s URL’s path.

location.port returns the Location object’s URL’s port.

location.protocol returns the Location object’s URL’s scheme.

location.search returns the Location object’s URL’s query
13#top does not work if an HTML element has id="top".

72

29.2 Location object methods
location.assign(url); navigates to the given page.

location.reload(); reloads the current page

location.replace(url); removes the current page from the session

history and navigates to the given page

location.toString(); returns the Location object’s URL. Note:
location.toString() returns only the href property;
so location.toString() and location.href.toString()
are equivalent.

30 The navigator object

30.1 Navigator object properties

w.navigator refers to the Navigator object of the Window which
has the properties:

• appName the full name of the browser

• appVersion the version of the browser (there is no
standard for this property)

• geolocation refers to the Geolocation of the window

• onLine returns true if the browser is online

• platform the operating system

• userAgent the contents of the user-agent HTTP
header (there is no standard for this property)

self.navigator.appCodeName returns the string Mozilla

self.navigator.appName returns the full name of the browser

self.navigator.appVersion returns the version of the browser

w.navigator.cookieEnabled returns false if setting a cookie will
be ignored, and true otherwise

self.navigator.hardwareConcurrency returns the number of lo-
gical processors potentially available to the user agent.

w.navigator.javaEnabled returns true if there’s a plugin that
supports the MIME type application/x-java-vm

self.navigator.language returns a language tag representing the
user’s preferred language

self.navigator.languages returns an array of language tags where
the user’s preferred language comes first

w.navigator.mimeTypes[n] returns the specified MimeType ob-
ject

w.navigator.mimeTypes[name] returns the MimeType object for
the given MIME type

w.navigator.mimeTypes.length returns the number of MIME
types, represented by MimeType objects, supported by the
plugins that the user agent reports.

self.navigator.onLine returns false if the user agent is definitely
offline (disconnected from the network) or true if the user
agent might be online; the events online and offline are
fired when the value of this attribute changes

73

self.navigator.platform returns the name of the operating system

w.navigator.plugins[n] returns the specified Plugin object

w.navigator.plugins[name] returns the Plugin object for the plu-
gin with the given name

w.navigator.plugins.length returns the number of plugins, rep-
resented by Plugin objects, that the user agent reports

self.navigator.product returns the string Gecko

w.navigator.productSub returns either the string "20030107", or
the string "20100101".

self.navigator.userAgent returns the complete user-agent
HTTP header

w.navigator.vendor returns the empty string, the string "Apple
Computer, Inc.", or the string "Google Inc.".

w.navigator.vendorSub returns the empty string

30.2 Navigator object methods

w.navigator.plugins.refresh([refresh]); updates the lists of sup-
ported plugins and MIME types for this page, and reloads
the page if the lists have changed

w.navigator.registerProtocolHandler(scheme,url,title) registers
a handler for the given scheme or content type, at the given
URL, with the given title; the mandatory string %s in the
URL is used as a placeholder for where to put the URL of
the content to be handled; scheme may be a string starting
web+ or one of:

• bitcoin
• geo
• im
• irc
• ircs
• magnet
• mailto
• mms
• news
• nntp

• sip

• sms

• smsto

• ssh

• tel

• urn

• webcal

• wtai

• xmpp

w.navigator.taintEnabled() returns false

w.navigator.unregisterProtocolHandler(scheme,url) unregisters the handler given by the arguments

74

31 Drop and drag

31.1 Drop and drag properties

dataTransfer.dropEffect[=v] returns or sets the kind of opera-
tion that is currently selected; the possible values are:

• none no operation allowed; dropping here will cancel
the drag-and-drop operation

• copy data will be copied if dropped here

• link data will be linked if dropped here

• move data will be moved if dropped here

dataTransfer.effectAllowed[=v] returns or sets the kinds of op-
erations that are to be allowed; the possible values are:

effectAllowed dropEffect
none none
copy copy
copyLink copy, or, if appropriate, link
copyMove copy, or, if appropriate, move
all copy, or, if appropriate, either

link or move
link link
linkMove link, or, if appropriate, move
move move

uninitialized
if a selection from a text field,
move, or, if appropriate, either
copy or link
if a selection, copy, or, if
appropriate, either link or
move
if an <a> element with an
href=" " attribute, link, or, if
appropriate, either copy or
move

any other case copy, or, if appropriate, either
link or move

dataTransfer.files returns a FileList object of the files being
dragged, if any

dataTransfer.items returns a DataTransferItemList object,
with the drag data

dataTransfer.types returns an array listing the formats that were
set in the dragstart event; in addition, if any files are being
dragged, then one of the types will be the string Files

75

event.dataTransfer returns the DataTransfer object for the
event

item.kind returns the drag data item kind, one of:

string a plain Unicode string

file a file

item.type returns the drag data item type string

items[n] returns the DataTransferItem object representing the
nth entry in the drag data store

items.length returns the number of items in the drag data store

31.2 Drop and drag methods

dataTransfer.clearData([format]); removes the data of the spe-
cified formats or all if format is omitted; format may be
text or url

dataTransfer.setData(format,data); adds the specified data;
format may be text or url

dataTransfer.setDragImage(element,x,y); uses the given ele-
ment to update the drag feedback, replacing any previously
specified feedback

items.add(data[,type]); adds a new entry for the given data to
the drag data store object; if the data is plain text then a
type string has to be provided also

items.clear(); removes all the entries in the drag data store object

items.remove(n) removes the item which is nthe in the drag data
store object

item.getAsString(callback); invokes the callback with the
string data as the argument, if the drag data item kind is
Plain Unicode string

<data>=dataTransfer.getData(format); returns the specified
data or the empty string; format may be text or url

<dataTransfer>=newDataTransfer(); creates a new Data-
Transfer object with an empty drag data store.

<file>=item.getAsFile(); returns a File object, if the drag data
item kind is File

32 Event handlers

Event handler objects include Event, EventHandler,
EventSource, EventTarget, ErrorEvent; they respond to an
event and always have a function object or null as their value;
their function objects always have the properties:

• type the type of event on which they operate

• target the object associated with the event.

and may have

• isTrusted a Boolean attribute which may be true or false

and other properties relevant to their type holding, for example,

76

the coordinates of a mouse movement or the value of the key
pressed.

Some function objects generate a single default action, for ex-
ample loading a page when a URL is clicked.
While variables declared within most function objects have local

scope, those declared within function objects whose event handler
is registered as an HTML attribute have global scope (and thus
no access to local variables).
Each event has a type and a name, which is a string describing

the event, for example

• application cache cached, checking, downloading, er-
ror, noupdate, obsolete (onobsoletechecking), progress, up-
dateready

• click click, contextmenu, dblclick; the property detail re-
turns whether it was a single, double or triple click; a click
event following immediately by another generates a dblclick
event

• document (and window) readystatechange (document
only), reset, submit

• drag and drop drag, dragend, dragenter, dragexit,
dragleave, dragover, dragstart, drop

Drag and drop events are normally associated with event ob-
jects generated by mousemove events; these have the prop-
erty dataTransfer which refers to the object holding the
information about the data to be transferred.

• form blur,* focus,* changes, reset, submit14

• global abort, blur, cancel, change, close, error,* focus, in-
put, invalid, load,* scroll,* select, show, sort 15

• keyboard keydown, keypress, keyup; keydown events in-
volving a printable character generate a keypress event which
sets the value of the keyCode property holding the value of
the key pressed along with the key modifier properties:

– altKey returns true if the Alt key was pressed
– ctrlKey returns true if the Ctrl key was pressed
– metaKey returns true if the Meta key was pressed
– shiftKey returns true if the Shift key was pressed

• media abort, addtrack, canplay, canplaythrough, cuechange,
change, durationchange, emptied, ended, enter, error, exit,
loadeddata, loadedmetadata, loadstart, pause, play, playing,
progress, ratechange, removetrack, resize, seeked, seeking,
stalled, suspend, timeupdate, volumechange, waiting

• mousemove mousedown, mouseup (a mousedown followed by
a mouseup event generates a click event), mouseover (de-
precated), mouseenter, mouseout (deprecated), mouseleave,
mousewheel; all have the key modifier properties of the
keyboard type plus:

– clientX returns the x position of the mouse in window
coordinates

– clientY returns the y position of the mouse in window
coordinates

mouseout/mouseleave events have a relatedTarget prop-
erty which returns the element over which the mouse is

14* has a different meaning when specified on <body> and <frameset> elements as those elements expose event handlers of the Window object with the same
names.

15* see note above.

77

now hovering and mousewheel events have properties for the
amount and direction of the wheel movement

• touchscreen touchend, touchmove, touchstart; these have
the properties:

– changedTouches an array describing the positions of a
touch

– rotation the clockwise angle in degrees of the rotation
of the finger involved between the initial and current
position

– scale the ratio current distance
initial distance of the two fingers in-

volved in a gesture; a value of <1 signifies a pinch close
event; otherwise, it is a pinch open event

• track addtrack, change, cuechange, enter, error, exit, load,
removetrack

• web workers and web sockets close, connect, message,
offline, online, open

• window afterprint, autocomplete, autocompleteerror, before-
print, beforeunload, hashchange, languagechange, message,
offline, online, pagehide, pageshow, popstate, resize, scroll,
storage, toggle, unload

To associate an event handler with an event, preface the name of
the event with on, for example,

e.onblur initiate action when the user leaves a field

e.onchange initiate action when the user changes field

e.onclick initiate action when the user clicks on an input

e.onfocus initiate action when the user goes to a form field

d.onload initiate action when a document has loaded
Apart from blur, focus, mouseenter, mouseleave and scroll, most
event handlers associated with a document or document element
become associated with its ancestor elements, for example,
e.track returns the track object (TextTrack, AudioTrack, or

VideoTrack) to which the event relates.

32.1 The DOMEvents object
The DOMEvents object holds the properties of click and
mousemove events:

• click the event

• UIEvent the value of the detail attribute

• MouseEvent the interface

• MouseEventInit the dictionary type

32.2 Event methods
e.addEventListener(e,f[,<true/false>]); executes f on <event>

or captures it if true (capturing involves intercepting the
event before its function is executed)

e.preventDefault(); prevents the default function associated with
an event from executing

e.removeEventListener(e,f[,<true/false>]); removes the spe-
cified event listener

e.stopPropagation(); prevents an event handler from propagat-
ing at any point in the propagation

source.close() aborts any instances of the fetch algorithm star-
ted for this EventSource object, and sets the readyState
attribute to CLOSED.

78

source.readyState returns the state of this EventSource object’s
connection. It can have the following values:
CONNECTING (numeric value 0) The connection has not

yet been established, or it was closed and the user agent
is reconnecting.

OPEN (numeric value 1) The user agent has an open con-
nection and is dispatching events as it receives them.

CLOSED (numeric value 2) The connection is not open, and
the user agent is not trying to reconnect. Either there
was a fatal error or the close() method was invoked.

source.url returns the URL providing the event stream.

source.withCredentials returns true if the credentials mode for
connection requests to the URL providing the event stream
is set to "include".

<source>=new EventSource(url[,{withCredentials:true}])
returns a new EventSource object. url is a string giv-
ing the URL that will provide the event stream. Setting
withCredentials to true will set the credentials mode for
connection requests to url to "include".

32.3 Error event object

The DOMException object is the string object which may take one
of the values:

• IndexSizeError

• HierarchyRequestError

• WrongDocumentError

• InvalidCharacterError

• NoModificationAllowedError

• NotFoundError

• NotSupportedError

• InvalidStateError

• SyntaxError

• InvalidModificationError

• NamespaceError

• InvalidAccessError

• SecurityError

• NetworkError

• AbortError

• URLMismatchError

• QuotaExceededError

• TimeoutError (whose code is the number 23, for legacy reas-
ons)

• InvalidNodeTypeError

• DataCloneError

79

32.4 Message event objects
Message events are used in communications by WebWorkers and
WebSockets. Their event objects have the properties:

broadcastChannel.name returns the name of the Broadcast
Channel object

channel.port1 returns the first MessagePort object

channel.port2 returns the second MessagePort object

e.data returns the data of the message

e.lastEventId returns the last event ID string, for server-sent
events

e.origin returns the origin of the message, for server-sent events
and cross-document messaging

e.ports returns the MessagePort array sent with the message, for
cross-document messaging and channel messaging

e.reason returns the general reason for the failure of the
requestAutocomplete() which may be:

• "" the reason is unknown

• cancel the user cancelled it

• disabled autofill is disabled

• invalid the entry does not satisfy the form’s constraints

e.source returns the WindowProxy of the source Window ob-
ject, for cross-document messaging, and the MessagePort
being attached, in the connect event fired at
SharedWorkerGlobalScope objects.

32.5 Message event methods

broadcastChannel.close(); closes the BroadcastChannel object

broadcastChannel.postMessage(<message>); sends the mes-
sage to other BroadcastChannel objects

port.close(); disconnects the port, so that it is no longer active

port.postMessage(message[,transfer]); posts a message through
the channel; objects listed in transfer are transferred, not
just cloned, meaning that they are no longer usable on the
sending side

port.start(); begins dispatching messages received on the port

32.6 Message constructors

broadcastChannel=new BroadcastChannel(name) Returns a
new BroadcastChannel object

channel=new MessageChannel(); returns a new Message
Channel object with two new MessagePort objects

32.7 Server sent events

To enable servers to push data to Web pages over HTTP or using
dedicated server-push protocols, create an EventSource object
with:

var source = new EventSource(v);

where v is the URL of the script providing the event messages; it
has the attributes:

• withCredentials a Boolean attribute which, when initial-
ised, is set to false

80

• readyState which can have the following values:

– CONNECTING(0) the connection has not yet been estab-
lished, or is reconnecting (the initial state)

– OPEN(1) the connection is dispatching events as it re-

ceives them.

– CLOSED(2) the connection is not open, and the user
agent is not trying to reconnect; either there was a
fatal error or the close() method was invoked

33 HTTP Requests

HTTP Requests are made using XMLHttpRequest function ob-
ject (which may, but in a Javascript context rarely does, use
XML); new requests should always be made using the constructor:

new XMLHttpRequest();

to avoid interfering with anything currently being handled by the
host object or any other similar object; it has the attributes:

• readyState the value of the HTTP Request’s state which
may be

0 open() has not been called
1 open() has been called
2 headers have been received
3 response body has been received
4 response has been received

• responseText the body of the response text

• status the value of an HTTP status response

• statusText the text of an HTTP status response

• upload the value of an object that defines an
addEventListener() method and its progress event prop-
erties for an upload event

33.1 HTTP methods

h.getResponseHeader(); returns the contents of the response
header

h.getAllResponseHeaders(); returns the contents of all the re-
sponse headers

h.open("<method>","<url>"); initiates an HTTP request
where <method> may be:

GET

POST

DELETE

HEAD

OPTIONS

PUT

h.setRequestHeader("Content type","text/plain"); sets the
request header for the POST method

h.send("<message>"); sends the body of the message, in the
case of the GET method, this is null.

81

33.2 Hyperlinks (temporary location)
h.hash; returns or sets the fragment of the URL

h.host; returns or sets the host and port of the URL

h.hostname; returns or sets the host of the URL

h.href; returns or sets the URL

h.origin; returns the origin of the URL

h.password; returns or sets the password of the URL

h.pathname; returns or sets the path of the URL

h.port; returns or sets the port of the URL

h.protocol; returns or sets the scheme of the URL

h.search; returns or sets the query of the URL

h.toString();

h.username; [tbc]

34 ValidityState object

34.1 ValidityState object properties

The ValidityState object properties are all Boolean attributes:

• valueMissing

• typeMismatch

• patternMismatch

• tooLong

• rangeUnderflow

• rangeOverflow

• stepMismatch

• badInput

• customError

• valid true if none of the other conditions are true

82

Part III
Additional Javascript features
35 Application cache objects
The application cache is deprecated and should no longer be used.

36 Web workers

Web worker objects include: Worker, WorkerGlobalScope,
WorkerLocation, WorkerNavigator, DedicatedWorker
GlobalScope, SharedWorker, SharedWorkerGlobalScope,
MessageChannel, MessagePort and PortCollection.

Web workers are long running scripts; they are expected to be
heavy weight and not to be around in large numbers.

WebWorker constructors
var <worker>=new Worker(v); initiates a new worker object

where v is a Javascript file containing the script.

Creating a Worker object creates

• a WorkerGlobalScope object with two attributes:

– self which returns itself
– location which returns the WorkerLocation object

representing the URL of the script used to initialize
the worker, and

• a DedicatedWorkerGlobalScope object with an implicit
MessagePort object

Each WorkerGlobalScope object has

• a list of the all the MessagePort objects that are entangled
with another port and that have one (but only one) port
owned by worker global scope; this list includes the implicit
MessagePort in the case of dedicated workers

• a list of the worker’s workers; initially this list is empty;
it is populated when the worker creates or obtains further
workers

• a list of the worker’s documents; initially this list is empty;
it is populated when the worker is created and dynamically
updated

• a navigator attribute which points to a WorkerNavigator
interface identifying the browser being used.

A Worker is

• a permissible worker if the list of the worker’s documents
is not empty

• a protected worker if it is a permissible worker and either

83

– it has outstanding timers, database transactions, or
network connections, or its list of the worker’s ports
is not empty, or

– it is a shared worker

• an active needed worker if any of the Document objects in
the worker’s documents are fully active

• a suspendable worker if it is not an active needed worker
but it is a permissible worker

sharedWorker=new SharedWorker(scriptURL[,name]) returns
a new SharedWorker object. scriptURL will be fetched and
executed in the background, creating a new global environ-
ment for which SharedWorker represents the communication
channel. name can be used to define the name of that global
environment.

sharedWorker=new SharedWorker(scriptURL[,options])
returns a new SharedWorker object. scriptURL will be
fetched and executed in the background, creating a new
global environment for which sharedWorker represents the
communication channel. options can be used to define
the name of that global environment via the name option.
It can also ensure this new global environment supports
JavaScript modules (specify type: "module"), and if that
is specified, can also be used to specify how scriptURL is
fetched through the credentials option.

A SharedWorker object is associated with a MessagePort object
and the SharedWorkerGlobalScope object has the attribute name
which is used to associate shared workers.

36.1 WebWorker properties

dedicatedWorkerGlobal.name returns dedicatedWorkerGlobal’s
name, i.e. the value given to the Worker constructor.
Primarily useful for debugging.

sharedWorkerGlobal.name returns sharedWorkerGlobal’s
name, i.e. the value given to the SharedWorker constructor.
Multiple SharedWorker objects can correspond to the same
shared worker (and SharedWorkerGlobalScope), by reusing
the same name.

sharedWorker.port returns sharedWorker’s MessagePort object
which can be used to communicate with the global environ-
ment.

workerGlobal.self returns workerGlobal.

workerGlobal.location returns workerGlobal’s WorkerLocation
object.

workerGlobal.navigator returns workerGlobal’s WorkerNavigator
object.

36.2 WebWorker methods

dedicatedWorkerGlobal.close() aborts dedicatedWorkerGlobal.

dedicatedWorkerGlobal.postMessage(message[,transfer])
clones message and transmits it to the Worker object associ-
ated with dedicatedWorkerGlobal. Transfer can be passed
as a list of objects that are to be transferred rather than
cloned.

sharedWorkerGlobal.close() aborts sharedWorkerGlobal.

84

worker.postMessage(message[,transfer]) clones message and
transmits it to worker’s global environment. transfer can be
passed as a list of objects that are to be transferred rather
than cloned.

worker.terminate() aborts worker’s associated global environ-
ment.

workerGlobal.importScripts(urls...) Fetches each URL in urls,
executes them one-by-one in the order they are passed, and
then returns

<worker>=new Worker(scriptURL[, options]) returns a new
Worker object. scriptURL will be fetched and executed
in the background, creating a new global environment for
which worker represents the communication channel. op-
tions can be used to define the name of that global environ-
ment via the name option, primarily for debugging purposes.

To receive messages from a worker use

<worker>.onmessage=function(event){. . . };

To receive from and post messages to a shared worker, you need to add the port, for example:

<worker>.<port>.onmessage=function(event){. . . };

<worker>.<port>.addEventListener(e,f[,<true/false>]);

Dedicated workers use MessagePort objects each of which has a port message queue.

37 Web sockets

The WebSocket constructor function enables a page to establish
a connection with an external page:

socket=new WebSocket(url[,protocols]); returns a new
WebSocket object, immediately establishing the associated
WebSocket connection. url is a string giving the URL over
which the connection is established. Only "ws" or "wss"
schemes are allowed; for a secure WebSocket, use "wss".

It has the properties:

• extensions

• protocol

• readyState which can have the following values:

– CONNECTING(0) the connection has not yet been estab-
lished (the initial value)

– OPEN(1) the connection is established and communica-
tion is possible

– CLOSING(2) the connection is going through the closing
handshake, or the close() method has been invoked

– CLOSED(3) the connection has been closed or could not
be opened

85

37.1 WebSocket properties
event.code returns the WebSocket connection close code

provided by the server.

event.reason returns the WebSocket connection close reason
provided by the server.

event.wasClean returns true if the connection closed cleanly.

socket.binaryType[=v] sets or returns a string that indicates how
binary data from the WebSocket object is exposed to scripts:

• "blob" Binary data is returned in Blob form. The de-
fault is "blob".

• "arraybuffer" Binary data is returned in
ArrayBuffer form.

socket.bufferedAmount returns the number of bytes of applic-
ation data (UTF-8 text and binary data) that have been
queued using send() but not yet been transmitted to the
network. If the WebSocket connection is closed, this attrib-
ute’s value will only increase with each call to the send()
method. (The number does not reset to zero once the con-
nection closes.)

socket.extensions returns the extensions selected by the server,
if any.

socket.protocol returns the subprotocol selected by the server, if
any. It can be used in conjunction with the array form of
the constructor’s second argument to perform subprotocol
negotiation.

socket.readyState returns the state of the WebSocket object’s
connection. It can have the values described above.

socket.url returns the URL that was used to establish the
WebSocket connection.

37.2 Web socket methods

socket.close([code][,reason]) closes the WebSocket connection,
optionally using code as the the WebSocket connection close
code and reason as the the WebSocket connection close
reason.

socket.send(data) transmits data using the WebSocket connec-
tion. data can be a string, Blob object, an ArrayBuffer
object or an ArrayBufferView object

38 Web storage

A Storage object provides access to a list of key/value pairs,
sometimes called items, both of which are strings; multiple separ-
ate objects can all be associated with the same list of key/value
pairs simultaneously.

Local storage is possible where a web browser’s Window object

has the properties localStorage and sessionStorage. These
properties hold the values of the Storage objects created on
the user’s own computer either permanently in the case of
localStorage or as long as a tab is opened in the case of
sessionStorage.

86

Note that

• different browsers have different Window objects and there-
fore local storage objects accessible to one Window object will
not be accessible to another

• local Storage objects associated with a URL will be access-
ible to all authors able to access that URL

• session Storage objects accessible to one top level tab of a
browser will not be accessible to another

• no encryption or security is available and so sensitive data
should never to stored in storage objects.

38.1 Storage properties
event.key returns the key of the storage item being changed.

event.newValue returns the new value of the key of the storage
item whose value is being changed.

event.oldValue returns the old value of the key of the storage
item whose value is being changed.

event.storageArea Returns the Storage object that was affected.

event.url returns the URL of the document whose storage item
changed.

s.length returns the number of key/value pairs currently present
in the list associated with the object

38.2 Storage methods
s.clear(); deletes all the values held in a Storage object

s.key(n) returns the key of the nth pair in the list or null

s[k]=v stores v to item k; if k already exists, updates v; other-
wise, adds another key/value pair to the object

s.removeItem(k); removes item k or does nothing if no item with
that key exists

s.setItem(k,v); stores v to item k; if k already exists, updates v;
otherwise, adds another key/value pair to the object

<value>=storage[k]

<value>=storage.getItem(k) returns the current value associ-
ated with the given key, or null if the given key does not
exist in the list associated with the object.

References
Ecma International (2011, June). ECMAScript language specification (5.1 ed.). Geneva: Ecma International. http://www.
ecma-international.org.

Flanagan, D. (2011). JavaScript: the definitive guide (Sixth ed.). Sebastapol, CA: O’Reilly Media.

Flanagan, D. (2012). JavaScript pocket reference (Third ed.). Sebastapol, CA: O’Reilly Media.

Hickson, I. (editor). (2013, 12 July). HTML: living standard. http://www.whatwg.org/specs/web-apps/current-work/.

87

http://www.ecma-international.org
http://www.ecma-international.org
http://www.whatwg.org/specs/web-apps/current-work/

Hickson, I. (editor). (2014, 6 August). HTML: living standard. http://www.whatwg.org/specs/web-apps/current-work/.

Hickson, I. (editor). (2020, 30 March). HTML: living standard. https://html.spec.whatwg.org/.

88

http://www.whatwg.org/specs/web-apps/current-work/
https://html.spec.whatwg.org/

A Reserved words
Words have been reserved in various versions of Javascript; some are reserved in strict mode and some for certain use cases. This list
simply lists them all whether or not they are reserved in a particular version of Javascript.

abstract
arguments
boolean
break
byte
case
catch
char
class
const

continue
debugger
default
delete
do
double
else
enum
eval
export
extends

false
final
finally
float
for
function
goto
if
implements
import
in

instanceof
int
interface
let
long
native
new
null
package
private
protected

public
return
short
static
super
switch
synchonized
this
throw
throws
transient

true
try
typeof
var
void
volatile
while
with
yield

B Built-in operators

The built-in operators, from high to low precedence, are ++ --
- + [unary] ~ ! delete typeof void * / % + - <�< >�> >�>�>
< <= > >= instanceof in == != === !== & ^ | && || ? :
= += and the remaining compound operators. Note that = ++ --
and delete always have side effects on a program.

new calls a built-in constructor to create a new object based its
prototype (section 6.3).

delete() deletes the value of a declared property, not that prop-
erty; where the configurable attribute of that property is
false, it throws a TypeError; it does not delete the values
of inherited properties, only those declared for the object.
Deleting the value of a property in the prototype object af-
fects all objects inherited from that prototype.

typeof() returns one of "undefined", "boolean", "number",
"string", "object" or "function"; null is regarded as an
object and an object with the call property is regarded
as a function.

void() discards the value of its operand, thereby making it
undefined.

B.1 Arithmetic and string operators

++ increment; n+ + is the same as n = n+ 1 or

converts a value to a number (=Number()) and increments
it

– decrement; n−− is the same as n = n− 1 or

89

converts a value to a number (=Number()) and decrements
it

+ concatenation (where at least one value is a string; =String())
or
addition, in which case any operation involving +0 has a
positive sign unless the other is a nonzero negative value
and (+Infinity) + (−Infinity) = NaN as does any opera-
tion involving NaN or
if unary, converts a value to a number (=Number())

- negation or
if unary and not NaN, converts a value to a negative number
(=Number())

B.2 Arithmetic only operators

* multiply; note thatInfinity ∗ 0 = NaN as does any operation
involving NaN

- divide; note that Infinity/Infinity = NaN and 0/0 = NaN as
does any operation involving NaN

% modulus; note that dividing Infinity, dividing by zero or any
operation involving NaN gives the result NaN

B.3 Relational operators

These return Boolean values unless one side is NaN in which case
they return undefined.

< less than

<= less than or equal to

> more than

>= more than or equal to

in returns true if a string matches the name of any property, in-
herited or declared,16 in an object or TypeError if it is not
an object; otherwise, it returns false.

instanceof returns true if a relational expression matches the
value of the hasInstance property of a function or
TypeError if the object is not a function; otherwise, it re-
turns false.

B.4 Equality operators
== equality

!= inequality

The equality operator returns false for any comparison involving
NaN but true when

• null and undefined are compared

• a toNumber() operation on a string or a Boolean yields an
equality or

• the value of an object’s primitiveValue internal property
is the same as a number or a string.

If you wish to force a particular type comparison, precede each
value with

" "+ for a string comparison

+ for a number comparison

! for a Boolean comparison.
16!== undefined returns true only for declared properties.

90

=== strict equality

!== strict inequality

The strict equality operator returns false if

• the values being compared are of different types

• the values are different, except where one is +0 and the other
−0 or

• one is NaN

but true if both values are the same or one value is undefined
or null.

B.5 Bitwise operators

Bitwise operators return a signed 32-bit integer.

& AND

^ XOR

| OR

~ NOT

<�< shift left

>�> shift right with sign extension

>�>�> shift right with zero extension

&= n&=y is the same as n=n AND y

and so on for ˆ | << >> and >>>

B.6 Logical operators

&& AND

|| OR

! NOT (i.e. invert Boolean value)

!! converts to Boolean (=Boolean())

B.7 Conditional operator

? : if the expression before ? returns true, return the value of
the expression before the :; otherwise return the value of
the expression after the :; for example, the absolute value
of x can be returned with:

x>0?x:-x;

B.8 Assignment operators

= assignment

+= n+ = y is the same as n = n+ y

and so on for − ∗ / and %

B.9 Comma operator

, discard the result of the expression before the comma and use
the result of the expression after it (most often used in for
loops)

91

B.10 Date operators
MakeTime(hour,min,sec,ms) returns the number of milliseconds

represented by the arguments

MakeDay(year,month,date) returns the number of days repres-
ented by the arguments

MakeDate(day,time) returns the number of milliseconds repres-
ented by the arguments

TimeClip(time) returns the number of milliseconds represented
by the argument

92

Object index
A
ApplicationCache, 37
ArrayBuffer, 33, 86
ArrayBufferView, 86
AudioTrack, 59, 62, 78
AudioTrackList, 59, 62

B
BarProp, 37
Blob, 33, 34, 86
Boolean, 18
BroadcastChannel, 80

C
CanvasDrawingStyles, 47
CanvasGradient, 47, 49, 50
CanvasPathMethods, 47
CanvasPattern, 47, 49, 50
CanvasRenderingContext2D, 34, 47, 49, 51
CSSStyleDeclaration, 41, 43

D
DataTransfer, 76
DataTransferItem, 76
DataTransferItemList, 75
Date, 20, 69
DedicatedWorkerGlobalScope, 83
Document, 32, 35, 36, 40, 45, 72, 84
DocumentFragment, 44
DOMEvents, 78
DOMException, 79
DOMMatrix, 51

DOMStringMap, 42
DrawingStyle, 47

E
Error, 25
ErrorEvent, 76
EvalError, 25
Event, 76
EventHandler, 76
EventSource, 76, 78–80
EventTarget, 76

F
File, 33, 76
FileList, 33, 69, 75

G
Geolocation, 73

H
History, 37, 71
HTMLCollection, 36, 37, 39, 40, 44, 68, 70
HTMLElement, 41, 59, 66
HTMLFormControlsCollection, 39, 68
HTMLFormsCollection, 39–41
HTMLOptionsCollection, 39–41, 70
HTMLPropertiesCollection, 39, 40, 43

I
ImageBitmap, 34
ImageBitmapRenderingContext, 51
ImageData, 34, 58

93

J
JSON, 25

L
Location, 37, 72

M
Math, 19
MediaError, 60
MessageChannel, 80, 83
MessagePort, 80, 83–85
Microdata, 43
MimeType, 65, 66, 73
MimeTypeArray, 65

N
Navigator, 37, 73
NodeList, 35, 38, 40, 68
Number, 19

O
OffscreenCanvas, 48

P
Path, 47
Path2D, 58
Plugin, 65, 66, 74
PluginArray, 65
PortCollection, 83
PropertyNodeList, 39, 41

R
RadioNodeList, 39, 40, 68
RangeError, 25
ReferenceError, 25

RegExp, 23

S
SharedWorker, 83, 84
SharedWorkerGlobalScope, 80, 83, 84
State, 71
Storage, 32, 36, 37, 86
String, 16
SyntaxError, 25

T
TextMetrics, 47, 56
TextTrack, 59, 61, 62, 65, 78
TextTrackCue, 62
TextTrackCueList, 62
TextTrackList, 62
TimeRanges, 59, 61
TypeError, 25

U
URIError, 25

V
ValidityState, 42, 82
VideoTrack, 59, 61, 65, 78
VideoTrackList, 61, 65

W
WebGLRenderingContext, 47
WebSocket, 85
Window, 32, 36, 37, 40, 72, 73, 80, 86, 87
WindowProxy, 32, 80
Worker, 83
WorkerGlobalScope, 83
WorkerLocation, 83

94

WorkerNavigator, 83

X
XMLHttpRequest, 81

95

The document is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License

96

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_GB
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_GB

	Introduction
	Javascript objects
	The built-in environment
	The host environment

	Object types
	The built-in environment
	The global object
	Global functions
	Objects
	Object properties
	Accessing object properties
	Object methods

	Functions
	Built-in functions
	Function methods
	Constructor functions
	Object prototypes
	Object prototype properties
	Constructor function properties

	Arrays
	Array properties
	Array methods
	Stack manipulation of arrays
	Array methods for functions

	Strings
	String methods

	Boolean objects
	Number and math objects
	Number object methods
	Math objects
	Math object properties
	Math object methods

	Date objects
	Date object methods

	Regular expressions
	Regular expression methods

	Error objects
	JSON
	Statements
	Declaring variables
	Conditionals
	Flow control
	Exception and error handling

	The host environment
	Host environment objects
	The window object
	Window object properties
	Window object methods

	The document node
	Document node properties
	Node methods

	The document object
	Document properties
	Document methods

	The element node
	Element node properties
	Element node methods

	Collection objects
	Collection object properties
	Collection object methods

	Element objects
	Element object properties
	Element methods
	Child element methods

	The text node
	Text node properties

	Canvas element objects
	Contexts
	2d context
	WebGL context
	Context, path and styles attributes
	Pixel manipulation

	Media element objects
	Media element properties
	Media element methods
	audioTrack objects
	audioTrack object properties
	audioTrack object methods

	textTrack objects
	textTrack object properties
	textTrack object methods

	videoTrack objects
	videoTrack object properties
	videoTrack object methods

	MimeType and Plugin objects
	MimeType and Plugin object properties
	MimeType and Plugin object methods

	Table element objects
	Table element properties
	Table element methods

	Form element objects
	Form element object properties
	Form element object methods

	The history object
	History properties
	History methods

	The location object
	Location object properties
	Location object methods

	The navigator object
	Navigator object properties
	Navigator object methods

	Drop and drag
	Drop and drag properties
	Drop and drag methods

	Event handlers
	The DOMEvents object
	Event methods
	Error event object
	Message event objects
	Message event methods
	Message constructors
	Server sent events

	HTTP Requests
	HTTP methods
	Hyperlinks (temporary location)

	ValidityState object
	ValidityState object properties

	Additional Javascript features
	Application cache objects
	Web workers
	WebWorker properties
	WebWorker methods

	Web sockets
	WebSocket properties
	Web socket methods

	Web storage
	Storage properties
	Storage methods

	Reserved words
	Built-in operators
	Arithmetic and string operators
	Arithmetic only operators
	Relational operators
	Equality operators
	Bitwise operators
	Logical operators
	Conditional operator
	Assignment operators
	Comma operator
	Date operators

